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Abstract: - In the prevailing work setting of the modern
technology sector, screen usage, static positions, and cognitive
engagements of the brain contribute to physical and mental
exhaustion. Existing solutions to fatigue monitoring and alerting
are often computationally complex and wearable and invasive
technology. This research work introduces the use of a vision-
tracking Al model that is non-invasive and exclusive to the
specific requirements of the technical professionals. The model
considers the eye movements, body positions, and human
interactions to provide an accurate level of physical and mental
fatigue. Through the learning concept of fusion learning, the
model differentiates between the drastic and short-lived work
patterns and the continuous physical and mental states. The
proposed model is validated to collectively work in a timely and
expert manner with very low computational complexity, thereby
imparting expert warning notifications related to physical and
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adheres to the concepts and

I. INTRODUCTION

Working on computers has been part of the routine jobs of
IT personnel, which include long hours of sitting, screen
time, and mental engagement. This will eventually lead to
physical and mental fatigue, which might decrease alertness,
productivity, and well-being. Symptoms include eye strain,
neck, shoulder, or back pain, as well as decreased
concentration levels when working on the computer for long
hours [1], [2].
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Unfavorable ergonomics add to these implications.
The consistent protruding head posture known as "tech-
neck™ exerts pressure on the neck and muscle tissues in the
cervical region because of continuous usage of the computer
and related devices [3]. Conversely, eye strain is usually
evident with modifications in blinking rates and consequent
eye closure and yawning, especially when computer screens
are utilized extensively [4] and [5].

Vision-based monitoring is a method for
documenting the manifestations of fatigue without
disturbing the user's workflow. Modern approaches in pose
estimation and facial landmarks, such as MediaPipe,
OpenPose, etc., make it possible to extract data on the
position of the body and the face with good accuracy using
conventional web cameras [6]. At the same time, patterns of
behavioural interactions, like keyboard rhythm and mouse
movement, were found to be correlated to mental workload
and fatigue levels [9], [10].

Most of the current solutions for fatigue detection
are based exclusively on one modality, for example, eye
movements or physiological signals, primarily intended for
transportation or medical fields rather than office work.
Wearable solutions are precise but unusable in office
environments. There is thus a need for an integrated non-
intrusive solution combining both visual and behavioral
parameters for fatigue estimation in real time.

In our paper, we present a vision-based Al system
encompassing posture analysis, ocular metrics, and
interaction behavior to accurately determine fatigue and
workload of IT professionals. Our system will run smoothly
even on standard edge machines to allow continuous
supervision with preservation of privacy.

Il. LITERATURE REVIEW

The study of automated fatigue recognition began with
visual cues that were very simple and evolved into machine
learning. The pioneered work considered such aspects as the
extent of your blinking or the movement of your head.
Recently, people have been utilizing deep learning and
various types of sensors. The research in office and IT
environments is aligned at three research areas: eye-based
fatigue detection, sitting and ergonomics, and the behavior
of people. A lot of articles claim that fatigue accumulates
gradually, and thus, to identify it accurately, you should
observe the fluctuations over time.

A. Vision-Based Fatigue Indicator.

It is even possible to know whether the person is tired or not
by examining the eyes. Individuals would examine things
such as the form of the eye to determine whether the
individual is drowsy. They do it with the help of the Eye
Aspect Ratio (EAR). One of its applications is in a number
of systems which operate automatically and independently.
EAR is better still when the system is able to pick up when
you are yawning. It is normally used together with other
tricks in order to obtain a more precise outcome. Sometimes
EAR is not compatible at all, when the lighting is not so
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good, or when you have some task that requires great
attention. Although, EAR improves the more sophisticated
deep-learning models that track the patterns of blinking with
time [1], they are computationally expensive and not very
useful in the sense that they constantly observe people at a
desk. Blink patterns vary also significantly with whatever
you are doing and such a look at the eyes might not be
sufficient [5].

B. Postural Ergonomics

It does get tiresome to sit in one position too long.
Researches indicate that a significant number of office
employees and those who work at home suffer neck and
back pain [16], [15]. This is why it is extremely important to
pay attention to posture. Ergonomic checker technology new
pose-estimation technology allows you to scan ergonomics
without actually touching the body, with standard cameras
[8]. And many of the systems use video data to compute risk
scores [5], [6] though the majority are designed to do a
check later, rather than provide real-time assistance.

C. Interaction Cues Behavioural

The experience of being mentally exhausted also alters the
way you use the computer. The trends of mouse movements
and typing speed change when you are exhausted and the
work load is high [10], [12]. These are behaviour cues that
come into play when eye signals are not clear as in the
situation where you are reading a lot and your body remains
very still.

D. Motivation for a Multimodal Approach

Majority of the existing fatigue detection systems simply
rely on a single means of determining whether an individual
is tired or not and this is when shaky when individuals are
sitting at the desks. Unless it takes time to check to see how
people are engaging with their surroundings, it will be
shortchanged. Behaviour based models do not take into
account the space surrounding the individual. Some such as
NASA-TLX require individuals to rate the intensity at which
they believe they are working, but it does not work well to
provide a quick test. We require systems that are user
friendly and that monitor the use of eyes, posture and
behaviour in a time based fashion- exactly what the Industry
5.0 people first thing is all about. An excellent fatigue
system would be highly useful. The proposed paper fills this
gap by suggesting one real-time work fatigue and workload
system in relation to IT pros.

I1l. METHODOLOGY
A. Data Acquisition Pipeline

Every information is gathered locally on the machine of the
user. This prevents the network delay and stores user data in
the device. There are three types of data that are registered
simultaneously.



The RGB video is captured at 640x480 at 30 frames per
second with a webcam. Facial and upper-body landmarks
are extracted with the aid of MediaPipe Face Mesh and Pose
models [6].

These models extract 468 facial landmarks for eye
and mouth tracking and 33 body key points for posture
analysis. OpenCV is used for frame capture and basic pre-
processing.

Landmark coordinates are only processed. Raw
video frames are not recorded to preserve user privacy. A
background process based on pynput library is used to log
and monitor keyboard and mouse activity. The time of
keystroke and movement of mouse are logged and clustered
in brief time intervals. The values are then utilized as
workload indicators [10]. The overall system architecture of
the proposed framework is as shown in [Fig. 1].

Feature Temporal Vision Fusion Trigger-
Extraction Buffer Network Confirm Logic
Face & Pose Analysis | (VFN)

Webcam

Fatigue /
Alert Output

Fig. 1. Overall system architecture of the proposed vision-based fatigue

detection framework.

B. Extracting Posture Feature

There are three pose landmarks that are used to estimate
posture-related fatigue.

The angle of forward rotation of the head is defined
with the help of the angle of inclination of the neck (0). An
equation is used to calculate a posture score as follows:

PS; = min (100, max (0, 100 - 2=%2)) )

Omax—0o
In this case, 8,is 15° in which the 6,,,,is 45° which is a
severe forward tilt [3].

The slouching of the laterals is estimated by taking
the difference between the right and the left shoulders that
are in a vertical position. The score of the shoulder
symmetry is obtained using the equation below:

§S; =min (100, 100- =) (2)

Where, Ay = |yt — yRa|
Constant changes in positions are regarded as natural
movement. An event of change of posture is registered when
0 varies by a change of more than 5° per second. The change
frequency score in the posture is determined with the help of
the following equation:

PCS; = min (100, 100 ) ?)
Reduced PCS values signify extended sitting in the stature.
C. Ocular and Blink-Based Fatigue Estimation

Fatigue in the eyes is assessed based on the behaviour of
blinking and eye closing.

The Eye Aspect Ratio (EAR) is used to perform
Blink detection [8]. The eye configuration used for detecting
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blinks is shown in [Fig. 2] The blink duration has a
relationship with the blink score as shown in equation:

BS, = min (100, 100 - 2 =Prem_) @)

max _Dnorm

where Dyorm = 200 ms (normal blink) and Dax = 500 ms
(drowsy blink). Persistently high BS; indicates heavy
eyelids.

Fig. 2. Eye landmark points used for blink detection (EAR).

PERCLOS is used to measure protracted eye closure in a
one-minute time frame [11].
The Mouth Aspect Ratio (MAR) is used to detect yawning.
The CANDIDE grid of the mouth landmark configuration
for yawning detection is presented in [Fig. 3]. The score of
the yawning is obtained as:

YS; = min (100, 100 1% ()
The occurrence of microsleep is signaled by closure of eyes
taking more than 500 ms or upon detecting a head nod,

and the microsleep indicator MS;is set to 100 for the current
window.

Fig. 3. Mouth landmark points for yawning detection (MAR).

D. Sitting Time and Behavioral Metrics

The continuous sitting is measured in minutes. The sitting
time score is determined by using the equation:

TS, = min (100, 100 - 22) 6)

E. Vision Fusion Network

A Vision Fusion Network is used to add individual scores.
The input is a 30-second box of posture, eye, and
behavioural characteristics. Each of the streams of features
is operated by parallel layers of one-dimensional
convolution. The results are added together and sent to a
fully connected layer to create a probability of fatigue.



This method enables the differentiation between
short-term behavior, e.g. blinking, and long-term fatigue
patterns.

F. Fatigue Feature Vector Construction and Decision Logic
At each time step t, individual fatigue metrics are combined
into a feature vector:

f. = [PS,,SS;,PCS;,BS;,YS;,TS;] @)

Feature vectors are aggregated into a sliding window tensor:
X, € RT*F ®)

with T = 30seconds and update stride of one second.
The Vision Fusion Network computes the instantaneous
fatigue probability:

Pfatigue (t) = VFN(Xt) (9)

A fatigue trigger is generated when:

Pfatigue (t) >T,T= 0.7 (10)

To reduce false positives, confirmation requires sustained
fatigue over a historical window:

1
T D P () > 7

k=t-w

an

where W = 5minutes.

G. Proposed Fatigue Detection Algorithm

The overall workflow followed to estimate fatigue and
generate system outputs is outlined in Algorithm. Rather
than relying on isolated measurements, the procedure
incrementally  transforms  visual  observations into
normalized fatigue indicators, models their evolution over
time, and validates fatigue events before reporting them.
Algorithm:

a. The system continuously captures video from the webcam
and extracts facial and upper-body landmarks using
MediaPipe models.

b. From these landmarks, posture-related, ocular, and sitting-
time fatigue metrics are computed and normalized using Eq.
(1)-Eq. (6).

c. The resulting fatigue metrics are combined into feature
vectors and organized into a sliding temporal window X,to
preserve recent fatigue history.

d. The Vision Fusion Network processes this window to
estimate the current probability of fatigue.

e. To avoid reacting to short-lived or accidental behaviours,
a Trigger—Confirm logic is applied, ensuring that only
sustained fatigue patterns are accepted.

f. Once validated, the fatigue probability is mapped to the
Combined Fatigue Index.

g. Based on this index, the system issues real-time alerts
when required and generates a summary report at the end of
the session.

H. Output & Reporting
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The wvalidated fatigue probability is mapped to the
Combined Fatigue Index:

CFI; = 100 - Pgyigye (1) (12)
The Combined Fatigue Index is used for visualization,
comparison, and evaluation in the Experimental Results
section. Real-time alerts are triggered when fatigue exceeds
predefined thresholds, and an end-of-session summary
report is generated.

IV. SYSTEM IMPLEMENTATION

A practical prototype was created and tested on standard
consumer-grade laptop hardware to determine its practical
feasibility of the proposed framework. The processing
workflow of the proposed vision-based fatigue detection
system is shown in [Fig. 4].

W Start Monitoring Session LFangue Alerts
IT Professional [
Monitoring Request !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Seore e e e .
Al-Based Fatigue Detection System | |
1
1 Monitoring 4 Trigger 5
Start Request—»| Camera d Fauque ---Alert —»(  Alarm
Monitoring Module | RGB Frames r o ‘ Phy qlcal Detection Manager '
Session & Anolyis | _ Metic Engine i A
£ wduw Lan dmavks yy
RGB Frames ':C i ! Fatigue | Alert
amera H | Data
Data Store j Metncs |

*1* Tl o v v
! Fatigue Alerts

Dat‘a Stor: j "—; l l ‘ Store

[Eye Metrics ‘ ‘lhysomgcalba\a ‘ Fatigue Metrics - Fatique Alerts

+ Eye Metrics « Physiological Data « Fatigue Metrics e )
E & Fatique Alerts

« Eye Metrics

+ Posture Metrics

Store

|
J

Fig. 4. Processing workflow of the proposed vision-based fatigue detection

system.

A. Hardware and Software Stack

The system was installed on a laptop with an Intel Core i5-
12450H (12th generation) processor that has 16 GB of
DDR4 RAM. The hybrid design of the processor comprising
of four performance cores and four efficiency cores also
enabled the video processing tasks that are compute-
intensive in nature to take place without interacting with the
background systems, thus preventing resource contention.

Video frames were recorded with the help of
OpenCV (v4.8) and landmarks of faces and poses were
obtained with the help of MediaPipe that was fully run on
the CPU. In any case where possible, the Intel OpenVINO
backend was selected to optimize inference behavior [6],
[11].

Vision Fusion Network was written in PyTorch and
guantized to INT8 and then deployed in the ONNX Runtime
ecosystem. This minimized inference time and allowed the
CPU to be used in real-time and without having a special
GPU.

B. Latency Analysis

Continuous fatigue monitoring must utilize real-time
performance. The average time spent on each frame, which
is represented by T,,., was measured during 60 minutes of
continuous run of the deployed system.



The mean end-to-end processing latency was 20.4
ms/frame or an effective throughput of about 48 frames per
second. This is higher than the normal webcam capture rate
of 30 FPS which guarantees a smooth and unobtrusive
operation in the normal office environment even in the

presence of background tasks.
Table 1: System Latency Analysis

Component Avg. Description

Latency

(ms)
Landmark 14.2 ms Face Mesh + Pose
Extraction (Performance Cores)
Feature 0.4 ms EAR, 0, and vector math
Calculation
VFN Inference | 5.8 ms Forward pass of 1D-

CNN (ONNX)

Total  System | ~20.4 ms ~48 FPS
Latency

V. EXPERIMENTAL RESULTS

The experimental results presented in this section were
obtained by executing the procedure described in Section I,
where raw multimodal inputs were transformed into
normalized fatigue metrics using Eq. (1)-Eq. (6), fused
temporally using the Vision Fusion Network, and validated
using the Trigger—Confirm logic before final index
computation.

The proposed system was tested on a controlled
synthetic fatigue progression model given that there is no
publicly available dataset that simultaneously records
postural behavior, ocular cues, and desk-based fatigue
patterns unique to IT professionals. This simulation was
created to model realistic physiological and behavioral
variability that occurs during a standard eight-hour working
day in the office which was adjusted by workload and work
fatigue data that were reported in the NASA-TLX research
[15].

The time-series data has been produced in terms of
results of the ergonomic and human-computer interaction
sources according to the standard working schedule 09:00-
17:00. To capture the natural variation of alertness
throughout the day the simulated work shift was sub-divided
into three phases. In the morning (09:00 -12:00), the user
was supposed to be in a high-alert position that is
characterized by upright sitting position (neck inclination
which is less than 15 ) with normal blink rates of 12-15 blink
per minute and short blink rates which are less than 250 ms.

The afternoon (13:0015:00) was to be modeled to
represent the popular circadian alertness drop. During this
stage the introduced simulation mode added frequency of
yawning, occasional incidences of microsleep and slow but
steady deterioration of the upright position, with the neck
inclination escalating to about 35. During the last stage of
the day (15:0017:00), the cumulative effects of fatigue were
more severe, as they were reflected in the maintenance of
ocular strain revealed by the increased duration of blink over
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350 ms, as well as in the maintenance of the slouched
posture.

Proposed Vision Fusion Network (VFN) was compared to a
traditional linear weighted moving average baseline, which
is widely used in fatigue monitoring systems [11]. As Fig. 5
illustrates, the baseline approach is very sensitive to isolated
events which tend to result in sudden spikes in the fatigue
score due to a yawn or short change of position. Contrary to
this, the VFN is characterized by a decreased temporal
responsiveness with less focus on the immediate anomalies
and more focus on the long-term trends of fatigue. It is
interesting to note that the VFN fatigue index increases
steadily and steadily during the post-lunch period (around
13:30) as an indication of simulated onset of cumulative

fatigue, and not behavioural period changes.
100 +

=== Linear Baseline (CFI)
VFEN (CF1)

07—~ Alert Threshold (75%)

80

70 1

60 1 # > #Z

50 L

Combined Fatigue Index (%)
~
i
[}
1
A}

rd
40 via < 7

30—

20

Time (Hours)

Fig. 5. Comparison of CFl over time for the proposed VFN and a linear

baseline.

The strength of the Trigger Confirm logic was also tested by
inserting 50 transient non-fatigue events and 50 actual
fatigue occasions in the data stream. As in Table 2, the
findings show that the false-positive rate decreased by over
16 percent when using a historical context of five minutes.
This demonstrates the need to apply temporal validation in
the monitoring of fatigue at continuous desk-based working
conditions.

The results confirm that the temporal validation
process is quite effective in filtering short-term behavioral
variability and capturing actual fatigue patterns. This is
invaluable for ensuring that alerts are generated correctly
without responding to actual non-fatigue events.

Table 2: False Positive Rate (FPR) Comparison

Methodology Rgzicrt;?:g (FPR) Implication
Naive 93.8% 18.4% | High alert noise due
Threshold- to sensitivity to
Based isolated events such
Detection [2] as single blinks or
yawns.
Vision Fusion | 96.2% 8.7% | Improved detection
Network stability, but still




(VEN) sensitive to short

without transient behaviours.

Temporal

Validation

VFN with 98.1% 2.1% | Demonstrates

Trigger— improved robustness

Confirm by suppressing

Logic transient non-fatigue

(Proposed) events within the
simulated evaluation.

In addition to real-time monitoring, a session-level
summary is also produced at the end of the work-day by the
system which points out the owverall fatigue trends and
postural behaviour. During the simulated session, total
sitting duration was 6.8 hours which is higher than the
recommended ergonomic hours, and the average posture
score was moderate slouching. There were four posture
related warnings and three of them were adhered to and the
compliance was 75.

Figure 5 shows the real-time dynamics of
Combined Fatigue Index in normal and fatigued conditions.
In general, the experimental findings suggested the

experimental framework can be used to generate consistent
and understandable fatigue estimates because it focuses on
long-term patterns and no single events. Such behavior aids
persistent fatigue consciousness and ergonomic intervention
in accordance with the human-related aims of Industry 5.0
[14].

Fig. 6. Example snapshot of the prototype interface for real-time fatigue

monitoring

Fig. 7. Example snapshot of the prototype interface for real-time fatigue

monitoring
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VI. COMPARATIVE ANALYSIS AND DISCUSSION

The proposed system was tested within the framework of the
representative fatigue detection methods found in literature.
analysis of eye reactions and it is hard to differentiate
between brief voluntary blinks and long-term eye closure
unless thresholds are manually adjusted [5], [8]. The Vision
Fusion Network is able to model temporal sequences by
using one-dimensional convolutions, which provides
information of how fatigue-related events evolve over time,
enhancing resistance to transient behaviours [7].

There are a number of previous systems that work
on one modality. Vision-only methods [4], [11] can be
mistaken in focus reading or slowed motion as fatigue and
behaviour-based methods [9] are not effective in low-
interaction work. By contrast, the proposed structure
combines postures and visual indicators which allow
interpreting the state of a user in the context and minimizing
false alarms.

High accuracy can be achieved in wearable-based
fatigue monitoring techniques based on EEG or EMG
signals [13], although these are unfeasible when used in a
long office environment. The suggested system uses a
standard webcam and processes everything locally, which
facilitates continuous monitoring, and the use of human-
centric design principles in Industry 5.0 addresses privacy
issues highlighted in the human-centric design principles
[14].

VII. CONCLUSION & FUTURE WORK

This paper has introduced a vision-based and non-intrusive
fatigue monitoring framework to be used in desk-based IT
based work environments to monitor continuous fatigue. In
comparison with the traditional drowsiness detection
methodology, the proposed system is based on a more liberal
definition of fatigue since it will consider ocular behaviour,
postural ergonomics and temporal consistency. The design
enables the framework to have slow development of fatigue
instead of responding to single or temporary occurrences.

Vision Fusion Network can fuse temporal parts of
multimodal feature, whereas Trigger-Confirm validation
mitigates spurious alerts due to transient behaviour including
a brief yawn or change of posture. During the simulated
assessment, the system was capable of steady fatigue
prediction and real-time execution on commaodity hardware
and did not require any custom sensors, wearable gadgets, or
GPU acceleration. Local processing also contributes to
preservation of privacy, which is vital in realistic
deployment of the same at the workplace.

The use of a synthetic fatigue progression model is
the main limitation of the research since publicly available,
annotated datasets of fatigue at the office are not available.
Future efforts will then focus on longitudinal field research
in actual field office settings in order to test the framework
against the subjective measure of fatigue like the Karolinska
Sleepiness Scale. Other future research paths are the
incorporation of the contactless physiological cues and the



formulation of contextually adaptive and context-sensitive
micro-break predictions to facilitate proactive fatigue
management.

All in all, this paper helps move in the right
direction of practical, people-centric fatigue monitoring
systems that can help achieve the well-being and
sustainability goals of Industry 5.0.
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