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Abstract: - In the prevailing work setting of the modern 

technology sector, screen usage, static positions, and cognitive 

engagements of the brain contribute to physical and mental 

exhaustion. Existing solutions to fatigue monitoring and alerting 

are often computationally complex and wearable and invasive 

technology. This research work introduces the use of a vision-

tracking AI model that is non-invasive and exclusive to the 

specific requirements of the technical professionals. The model 

considers the eye movements, body positions, and human 

interactions to provide an accurate level of physical and mental 

fatigue. Through the learning concept of fusion learning, the 

model differentiates between the drastic and  short-lived work 

patterns and the continuous physical and mental states. The 

proposed model is validated to collectively work in a timely and 

expert manner with very low computational complexity, thereby 

imparting expert warning notifications related to physical and 

mental fatigue. The model adheres to the concepts and 

requirements of Industry 5.0. 

Keywords— Computer Vision, Workload Detection, Mediapipe, 

Fusion Neural Network, Machine Learning, Artificial 

Intelligence, MentalFatigue. 

I.   INTRODUCTION 

Working on computers has been part of the routine jobs of 

IT personnel, which include long hours of sitting, screen 

time, and mental engagement. This will eventually lead to 

physical and mental fatigue, which might decrease alertness, 

productivity, and well-being. Symptoms include eye strain, 

neck, shoulder, or back pain, as well as decreased 

concentration levels when working on the computer for long 

hours [1], [2]. 
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Unfavorable ergonomics add to these implications. 

The consistent protruding head posture known as "tech-

neck" exerts pressure on the neck and muscle tissues in the 

cervical region because of continuous usage of the computer 

and related devices [3]. Conversely, eye strain is usually 

evident with modifications in blinking rates and consequent 

eye closure and yawning, especially when computer screens 

are utilized extensively [4] and [5]. 

Vision-based monitoring is a method for 

documenting the manifestations of fatigue without 
disturbing the user's workflow. Modern approaches in pose 

estimation and facial landmarks, such as MediaPipe, 

OpenPose, etc., make it possible to extract data on the 

position of the body and the face with good accuracy using 

conventional web cameras [6]. At the same time, patterns of 

behavioural interactions, like keyboard rhythm and mouse 

movement, were found to be correlated to mental workload 

and fatigue levels [9], [10]. 

Most of the current solutions for fatigue detection 

are based exclusively on one modality, for example, eye 

movements or physiological signals, primarily intended for 
transportation or medical fields rather than office work. 

Wearable solutions are precise but unusable in office 

environments. There is thus a need for an integrated non-

intrusive solution combining both visual and behavioral 

parameters for fatigue estimation in real time. 

In our paper, we present a vision-based AI system 

encompassing posture analysis, ocular metrics, and 

interaction behavior to accurately determine fatigue and 

workload of IT professionals. Our system will run smoothly 

even on standard edge machines to allow continuous 

supervision with preservation of privacy. 

 
II.   LITERATURE REVIEW 

The study of automated fatigue recognition began with 

visual cues that were very simple and evolved into machine 

learning. The pioneered work considered such aspects as the 

extent of your blinking or the movement of your head. 

Recently, people have been utilizing deep learning and 

various types of sensors. The research in office and IT 

environments is aligned at three research areas: eye-based 

fatigue detection, sitting and ergonomics, and the behavior 

of people. A lot of articles claim that fatigue accumulates 

gradually, and thus, to identify it accurately, you should 
observe the fluctuations over time.  

 

A. Vision-Based Fatigue Indicator.  

It is even possible to know whether the person is tired or not 

by examining the eyes. Individuals would examine things 

such as the form of the eye to determine whether the 

individual is drowsy. They do it with the help of the Eye 

Aspect Ratio (EAR). One of its applications is in a number 

of systems which operate automatically and independently. 

EAR is better still when the system is able to pick up when 

you are yawning. It is normally used together with other 

tricks in order to obtain a more precise outcome. Sometimes 
EAR is not compatible at all, when the lighting is not so 

good, or when you have some task that requires great 

attention. Although, EAR improves the more sophisticated 

deep-learning models that track the patterns of blinking with 

time [1], they are computationally expensive and not very 

useful in the sense that they constantly observe people at a 

desk. Blink patterns vary also significantly with whatever 

you are doing and such a look at the eyes might not be 

sufficient [5]. 

 

B. Postural Ergonomics  
It does get tiresome to sit in one position too long. 

Researches indicate that a significant number of office 

employees and those who work at home suffer neck and 

back pain [16], [15]. This is why it is extremely important to 

pay attention to posture. Ergonomic checker technology new 

pose-estimation technology allows you to scan ergonomics 

without actually touching the body, with standard cameras 

[8]. And many of the systems use video data to compute risk 

scores [5], [6] though the majority are designed to do a 

check later, rather than provide real-time assistance.  

 
C. Interaction Cues Behavioural  

The experience of being mentally exhausted also alters the 

way you use the computer. The trends of mouse movements 

and typing speed change when you are exhausted and the 

work load is high [10], [12]. These are behaviour cues that 

come into play when eye signals are not clear as in the 

situation where you are reading a lot and your body remains 

very still.  

 

D. Motivation for a Multimodal Approach 

 Majority of the existing fatigue detection systems simply 
rely on a single means of determining whether an individual 

is tired or not and this is when shaky when individuals are 

sitting at the desks. Unless it takes time to check to see how 

people are engaging with their surroundings, it will be 

shortchanged. Behaviour based models do not take into 

account the space surrounding the individual. Some such as 

NASA-TLX require individuals to rate the intensity at which 

they believe they are working, but it does not work well to 

provide a quick test. We require systems that are user 

friendly and that monitor the use of eyes, posture and 

behaviour in a time based fashion- exactly what the Industry 
5.0 people first thing is all about. An excellent fatigue 

system would be highly useful. The proposed paper fills this 

gap by suggesting one real-time work fatigue and workload 

system in relation to IT pros. 

 

III.   METHODOLOGY 

A. Data Acquisition Pipeline 

Every information is gathered locally on the machine of the 

user. This prevents the network delay and stores user data in 

the device. There are three types of data that are registered 
simultaneously. 
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The RGB video is captured at 640×480 at 30 frames per 

second with a webcam. Facial and upper-body landmarks 

are extracted with the aid of MediaPipe Face Mesh and Pose 

models [6]. 

These models extract 468 facial landmarks for eye 

and mouth tracking and 33 body key points for posture 

analysis. OpenCV is used for frame capture and basic pre-

processing. 

Landmark coordinates are only processed. Raw 

video frames are not recorded to preserve user privacy. A 
background process based on pynput library is used to log 

and monitor keyboard and mouse activity. The time of 

keystroke and movement of mouse are logged and clustered 

in brief time intervals. The values are then utilized as 

workload indicators [10]. The overall system architecture of 

the proposed framework is as shown in [Fig. 1]. 

 

Fig. 1. Overall system architecture of the proposed vision-based fatigue 

detection framework. 

 

B. Extracting Posture Feature 

There are three pose landmarks that are used to estimate 

posture-related fatigue. 

 The angle of forward rotation of the head is defined 

with the help of the angle of inclination of the neck (θ). An 
equation is used to calculate a posture score as follows:  

𝑃𝑆𝑖 = min (100, max(0,  100 ⋅
θ𝑖−θ0

θ𝑚𝑎𝑥−θ0
))  (1) 

In this case, 𝜃0is 15° in which the 𝜃𝑚𝑎𝑥is 45° which is a 

severe forward tilt [3]. 

 The slouching of the laterals is estimated by taking 

the difference between the right and the left shoulders that 

are in a vertical position. The score of the shoulder 
symmetry is obtained using the equation below: 

𝑆𝑆𝑖 = min (100,  100 ⋅
Δ𝑦

δ𝑚𝑎𝑥
) (2) 

Where, Δy = |yᴸₛₕ − yᴿₛₕ| 

Constant changes in positions are regarded as natural 

movement. An event of change of posture is registered when 

θ varies by a change of more than 5° per second. The change 

frequency score in the posture is determined with the help of 
the following equation: 

𝑃𝐶𝑆𝑖 = min(100,  100 ⋅
𝑁𝑖

30
) (3) 

Reduced PCS values signify extended sitting in the stature. 

C. Ocular and Blink-Based Fatigue Estimation 

Fatigue in the eyes is assessed based on the behaviour of 

blinking and eye closing. 

 The Eye Aspect Ratio (EAR) is used to perform 

Blink detection [8]. The eye configuration used for detecting 

blinks is shown in [Fig. 2] The blink duration has a 

relationship with the blink score as shown in equation: 

𝐵𝑆𝑖 = min(100,  100 ⋅
𝐷𝑖−𝐷norm

𝐷𝑚𝑎𝑥−𝐷norm
) (4) 

where Dₙₒᵣₘ = 200 ms (normal blink) and Dₘₐₓ = 500 ms 

(drowsy blink). Persistently high BSᵢ indicates heavy 

eyelids. 

Fig. 2. Eye landmark points used for blink detection (EAR). 

 

PERCLOS is used to measure protracted eye closure in a 

one-minute time frame [11]. 

The Mouth Aspect Ratio (MAR) is used to detect yawning. 
The CANDIDE grid of the mouth landmark configuration 

for yawning detection is presented in [Fig. 3]. The score of 

the yawning is obtained as: 

 

𝑌𝑆𝑖 = min(100,  100 ⋅
𝑌𝑖

10
) (5) 

The occurrence of microsleep is signaled by closure of eyes 

taking more than 500 ms or upon detecting a head nod, 

and the microsleep indicator 𝑀𝑆𝑖 is set to 100 for the current 

window. 

 

Fig. 3. Mouth landmark points for yawning detection (MAR). 

 

D. Sitting Time and Behavioral Metrics 

The continuous sitting is measured in minutes. The sitting 

time score is determined by using the equation: 

𝑇𝑆𝑖 = min (100,  100 ⋅
𝑡sit

60
) (6) 

 

 

E. Vision Fusion Network  

A Vision Fusion Network is used to add individual scores. 

The input is a 30-second box of posture, eye, and 

behavioural characteristics. Each of the streams of features 

is operated by parallel layers of one-dimensional 

convolution. The results are added together and sent to a 

fully connected layer to create a probability of fatigue. 
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 This method enables the differentiation between 

short-term behavior, e.g. blinking, and long-term fatigue 

patterns. 

 

F. Fatigue Feature Vector Construction and Decision Logic 

At each time step 𝑡, individual fatigue metrics are combined 

into a feature vector: 

𝐟𝑡 = [𝑃𝑆𝑡 , 𝑆𝑆𝑡 , 𝑃𝐶𝑆𝑡 , 𝐵𝑆𝑡 , 𝑌𝑆𝑡 , 𝑇𝑆𝑡] (7) 
 
Feature vectors are aggregated into a sliding window tensor: 

𝐗𝑡 ∈ ℝ𝑇×𝐹 (8) 

 

with 𝑇 = 30seconds and update stride of one second. 

The Vision Fusion Network computes the instantaneous 

fatigue probability: 

𝑃fatigue(𝑡) = VFN(𝐗𝑡) (9) 

 

A fatigue trigger is generated when: 

𝑃fatigue(𝑡) > 𝜏, 𝜏 = 0.7 (10) 

 

To reduce false positives, confirmation requires sustained 

fatigue over a historical window: 

1

𝑊
∑ 𝑃fatigue

𝑡

𝑘=𝑡−𝑊

(𝑘) > 𝜏 (11) 

 

where 𝑊 = 5minutes. 

 

G. Proposed Fatigue Detection Algorithm 

The overall workflow followed to estimate fatigue and 

generate system outputs is outlined in Algorithm. Rather 

than relying on isolated measurements, the procedure 

incrementally transforms visual observations into 

normalized fatigue indicators, models their evolution over 

time, and validates fatigue events before reporting them. 

Algorithm: 

a. The system continuously captures video from the webcam 
and extracts facial and upper-body landmarks using 

MediaPipe models. 

b. From these landmarks, posture-related, ocular, and sitting-

time fatigue metrics are computed and normalized using Eq. 

(1)–Eq. (6). 

c. The resulting fatigue metrics are combined into feature 

vectors and organized into a sliding temporal window 𝑋𝑡to 

preserve recent fatigue history. 

d. The Vision Fusion Network processes this window to 

estimate the current probability of fatigue. 
e. To avoid reacting to short-lived or accidental behaviours, 

a Trigger–Confirm logic is applied, ensuring that only 

sustained fatigue patterns are accepted. 

f. Once validated, the fatigue probability is mapped to the 

Combined Fatigue Index. 

g. Based on this index, the system issues real-time alerts 

when required and generates a summary report at the end of 

the session. 

H. Output & Reporting 

The validated fatigue probability is mapped to the 

Combined Fatigue Index: 

𝐶𝐹𝐼𝑖 = 100 ⋅ 𝑃fatigue(𝑖) (12) 

 

The Combined Fatigue Index is used for visualization, 

comparison, and evaluation in the Experimental Results 

section. Real-time alerts are triggered when fatigue exceeds 

predefined thresholds, and an end-of-session summary 

report is generated. 

 

IV.   SYSTEM IMPLEMENTATION 

A practical prototype was created and tested on standard 

consumer-grade laptop hardware to determine its practical 

feasibility of the proposed framework. The processing 
workflow of the proposed vision-based fatigue detection 

system is shown in [Fig. 4]. 

 

Fig. 4. Processing workflow of the proposed vision-based fatigue detection 

system. 

A. Hardware and Software Stack 

The system was installed on a laptop with an Intel Core i5-

12450H (12th generation) processor that has 16 GB of 
DDR4 RAM. The hybrid design of the processor comprising 

of four performance cores and four efficiency cores also 

enabled the video processing tasks that are compute-

intensive in nature to take place without interacting with the 

background systems, thus preventing resource contention. 

 Video frames were recorded with the help of 

OpenCV (v4.8) and landmarks of faces and poses were 

obtained with the help of MediaPipe that was fully run on 

the CPU. In any case where possible, the Intel OpenVINO 

backend was selected to optimize inference behavior [6], 

[11]. 

 Vision Fusion Network was written in PyTorch and 
quantized to INT8 and then deployed in the ONNX Runtime 

ecosystem. This minimized inference time and allowed the 

CPU to be used in real-time and without having a special 

GPU. 

B. Latency Analysis 

Continuous fatigue monitoring must utilize real-time 

performance. The average time spent on each frame, which 

is represented by 𝑇proc, was measured during 60 minutes of 

continuous run of the deployed system. 
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 The mean end-to-end processing latency was 20.4 

ms/frame or an effective throughput of about 48 frames per 

second. This is higher than the normal webcam capture rate 

of 30 FPS which guarantees a smooth and unobtrusive 

operation in the normal office environment even in the 

presence of background tasks. 
Table 1: System Latency Analysis 

Component Avg. 

Latency 

(ms) 

Description 

Landmark 

Extraction 

14.2 ms Face Mesh + Pose 

(Performance Cores) 

Feature 

Calculation 

0.4 ms EAR, θ, and vector math 

VFN Inference 5.8 ms Forward pass of 1D-

CNN (ONNX) 

Total System 

Latency 

~20.4 ms ~48 FPS 

 

V.   EXPERIMENTAL RESULTS 

The experimental results presented in this section were 
obtained by executing the procedure described in Section III, 

where raw multimodal inputs were transformed into 

normalized fatigue metrics using Eq. (1)–Eq. (6), fused 

temporally using the Vision Fusion Network, and validated 

using the Trigger–Confirm logic before final index 

computation. 

 The proposed system was tested on a controlled 

synthetic fatigue progression model given that there is no 

publicly available dataset that simultaneously records 

postural behavior, ocular cues, and desk-based fatigue 

patterns unique to IT professionals. This simulation was 

created to model realistic physiological and behavioral 
variability that occurs during a standard eight-hour working 

day in the office which was adjusted by workload and work 

fatigue data that were reported in the NASA-TLX research 

[15]. 

 The time-series data has been produced in terms of 

results of the ergonomic and human-computer interaction 

sources according to the standard working schedule 09:00-

17:00. To capture the natural variation of alertness 

throughout the day the simulated work shift was sub-divided 

into three phases. In the morning (09:00 -12:00), the user 

was supposed to be in a high-alert position that is 
characterized by upright sitting position (neck inclination 

which is less than 15 ) with normal blink rates of 12-15 blink 

per minute and short blink rates which are less than 250 ms. 

 The afternoon (13:0015:00) was to be modeled to 

represent the popular circadian alertness drop. During this 

stage the introduced simulation mode added frequency of 

yawning, occasional incidences of microsleep and slow but 

steady deterioration of the upright position, with the neck 

inclination escalating to about 35. During the last stage of 

the day (15:0017:00), the cumulative effects of fatigue were 

more severe, as they were reflected in the maintenance of 

ocular strain revealed by the increased duration of blink over 

350 ms, as well as in the maintenance of the slouched 

posture. 

Proposed Vision Fusion Network (VFN) was compared to a 

traditional linear weighted moving average baseline, which 

is widely used in fatigue monitoring systems [11]. As Fig. 5 

illustrates, the baseline approach is very sensitive to isolated 

events which tend to result in sudden spikes in the fatigue 

score due to a yawn or short change of position. Contrary to 

this, the VFN is characterized by a decreased temporal 

responsiveness with less focus on the immediate anomalies 
and more focus on the long-term trends of fatigue. It is 

interesting to note that the VFN fatigue index increases 

steadily and steadily during the post-lunch period (around 

13:30) as an indication of simulated onset of cumulative 

fatigue, and not behavioural period changes. 

 

Fig. 5.  Comparison of CFI over time for the proposed VFN and a linear 

baseline. 

The strength of the Trigger Confirm logic was also tested by 

inserting 50 transient non-fatigue events and 50 actual 

fatigue occasions in the data stream. As in Table 2, the 

findings show that the false-positive rate decreased by over 

16 percent when using a historical context of five minutes. 
This demonstrates the need to apply temporal validation in 

the monitoring of fatigue at continuous desk-based working 

conditions. 

 The results confirm that the temporal validation 

process is quite effective in filtering short-term behavioral 

variability and capturing actual fatigue patterns. This is 

invaluable for ensuring that alerts are generated correctly 

without responding to actual non-fatigue events. 
 

Table 2: False Positive Rate (FPR) Comparison 

Methodology 
Detection 

Accuracy 
(FPR) Implication 

Naive 

Threshold-

Based 

Detection [2] 

93.8% 18.4% High alert noise due 

to sensitivity to 

isolated events such 

as single blinks or 

yawns. 

Vision Fusion 
Network 

96.2% 8.7% Improved detection 
stability, but still 
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(VFN) 

without 

Temporal 

Validation 

sensitive to short 

transient behaviours. 

VFN with 

Trigger–

Confirm 

Logic 

(Proposed) 

98.1% 2.1% Demonstrates 

improved robustness 

by suppressing 

transient non-fatigue 

events within the 

simulated evaluation. 

 

 In addition to real-time monitoring, a session-level 

summary is also produced at the end of the work-day by the 
system which points out the overall fatigue trends and 

postural behaviour. During the simulated session, total 

sitting duration was 6.8 hours which is higher than the 

recommended ergonomic hours, and the average posture 

score was moderate slouching. There were four posture 

related warnings and three of them were adhered to and the 

compliance was 75. 

 Figure 5 shows the real-time dynamics of 

Combined Fatigue Index in normal and fatigued conditions. 

In general, the experimental findings suggested the 

experimental framework can be used to generate consistent 
and understandable fatigue estimates because it focuses on 

long-term patterns and no single events. Such behavior aids 

persistent fatigue consciousness and ergonomic intervention 

in accordance with the human-related aims of Industry 5.0 

[14]. 

 

 

Fig. 6. Example snapshot of the prototype interface for real-time fatigue 

monitoring 

 

Fig. 7. Example snapshot of the prototype interface for real-time fatigue 

monitoring 

VI.   COMPARATIVE ANALYSIS AND DISCUSSION 

The proposed system was tested within the framework of the 

representative fatigue detection methods found in literature. 

analysis of eye reactions and it is hard to differentiate 

between brief voluntary blinks and long-term eye closure 

unless thresholds are manually adjusted   [5], [8]. The Vision 

Fusion Network is able to model temporal sequences by 

using one-dimensional convolutions, which provides 

information of how fatigue-related events evolve over time, 
enhancing resistance to transient behaviours [7]. 

 There are a number of previous systems that work 

on one modality. Vision-only methods [4], [11] can be 

mistaken in focus reading or slowed motion as fatigue and 

behaviour-based methods [9] are not effective in low-

interaction work. By contrast, the proposed structure 

combines postures and visual indicators which allow 

interpreting the state of a user in the context and minimizing 

false alarms. 

 High accuracy can be achieved in wearable-based 

fatigue monitoring techniques based on EEG or EMG 

signals [13], although these are unfeasible when used in a 
long office environment. The suggested system uses a 

standard webcam and processes everything locally, which 

facilitates continuous monitoring, and the use of human-

centric design principles in Industry 5.0 addresses privacy 

issues highlighted in the human-centric design principles 

[14]. 

 

VII.   CONCLUSION & FUTURE WORK 

This paper has introduced a vision-based and non-intrusive 

fatigue monitoring framework to be used in desk-based IT 
based work environments to monitor continuous fatigue. In 

comparison with the traditional drowsiness detection 

methodology, the proposed system is based on a more liberal 

definition of fatigue since it will consider ocular behaviour, 

postural ergonomics and temporal consistency. The design 

enables the framework to have slow development of fatigue 

instead of responding to single or temporary occurrences. 

 Vision Fusion Network can fuse temporal parts of 

multimodal feature, whereas Trigger-Confirm validation 

mitigates spurious alerts due to transient behaviour including 

a brief yawn or change of posture. During the simulated 

assessment, the system was capable of steady fatigue 
prediction and real-time execution on commodity hardware 

and did not require any custom sensors, wearable gadgets, or 

GPU acceleration. Local processing also contributes to 

preservation of privacy, which is vital in realistic 

deployment of the same at the workplace. 

 The use of a synthetic fatigue progression model is 

the main limitation of the research since publicly available, 

annotated datasets of fatigue at the office are not available. 

Future efforts will then focus on longitudinal field research 

in actual field office settings in order to test the framework 

against the subjective measure of fatigue like the Karolinska 
Sleepiness Scale. Other future research paths are the 

incorporation of the contactless physiological cues and the 
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formulation of contextually adaptive and context-sensitive 

micro-break predictions to facilitate proactive fatigue 

management. 

 All in all, this paper helps move in the right 

direction of practical, people-centric fatigue monitoring 

systems that can help achieve the well-being and 

sustainability goals of Industry 5.0. 
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