
15
10.5281/zenodo.18086738

https://www.ijsrtm.com
Vol. 5 Issue 4 December 2025: 15-21

Published online 30 Dec 2025

International Journal of Scientific Research
in Technology & Management

YOLOv8-FaceEmbedding: Real Time Missing

Person Detection and Recognition
Priyanshu Singh

Dept. of Computer Science and Engineering

Oriental Institute of Science and Technology
Bhopal, Madhya Pradesh, India

ompriyanshu12@gmail.com

Riya Bisen
Dept. of Computer Science and Engineering

Oriental Institute of Science and Technology
Bhopal, Madhya Pradesh, India

riyabisen935@gmail.com

Prakhar Bisen
Dept. of Computer Science and Engineering

Oriental Institute of Science and Technology
Bhopal, Madhya Pradesh, India
prakharbisen790@gmail.com

Riya Kaushik
Dept. of Computer Science and Engineering
Oriental Institute of Science and Technology

Bhopal, Madhya Pradesh, India
anantpratapsinghsachan@gmail.com

Vinita Shivastava
Dept. of Computer Science and Engineering
Oriental Institute of Science and Technology

Bhopal, Madhya Pradesh, India
vinitashrivastava@oriental.ac.in

Abstract— Every year, individuals go missing or remain

unidentified due to accidents, displacement, or incident. Even

though artificial intelligence and computer vision technology has

come a long way to enhance surveillance systems, they are still

constrained by the traditional single- camera and monolithic

design when it comes to scalability and real time performance.

This paper proposes a modular multi-camera face recognition

surveillance system that uses a face-recognition library used for

encoding and identifying faces along with YOLOv8 for object

detection. The design separates camera management from the

various recognition tasks and backend services for secure data

management with encryption and role-based access management.

The experiments demonstrated 95.3% accuracy for recognition,

an average latency of 0.78 seconds, and an increase of 20% in

efficiency and scalability compared to conventional systems. In

conclusion, modern surveillance systems and applications provide

a reliable, scalable and secure architecture. As a future

improvement, our system utilizes AI-based facial de-aging and

age-progression technology. The system can mimic the probable

current facial structure of the individual by generating age-

progressed images, resulting in more accurate matching between

the newly lost or live-captured faces.

Keywords— Face Recognition, YOLOv8, Deep Learning,

Facial Encoding, Multi-camera Surveillance, Missing Per- son

Identification.

I. INTRODUCTION

The deployment of large-scale surveillance camera networks

in public spaces has created new opportunities to improve

safety and support time critical tasks such as locating

missing individuals. However, continuous manual

monitoring of the video feed from the network of multiple
cameras is inefficient and prone to human error in crowded

or even complex environments. Thus, recent developments

have seen the integration of deep learning based detection

and tracking and identification techniques into modern

surveillance systems, enabling automatic and real-time

analysis of video streams [2]. Although person re-

identification has reached a stage where reliable matching of

persons across non-overlapping camera views can be

achieved by learning discriminative deep feature

representations, recent surveys point to the increased

maturity and further effectiveness of video-based Re-ID in
real large-scale surveillance scenarios [1]. Another path of

progress has been the development of face recognition

technology, which has become increasingly robust against

pose variations, low resolution, occlusion, and illumination

changes, all factors common in real-world surveillance

footage [3].

E-ISSN: 2583-7141

https://www.ijsrtm.com/

16
10.5281/zenodo.18086738

Real-time object detection models such as YOLOv8 have

also become indispensable in surveillance applications due

to their high speed and strong performance in detecting

persons within live camera streams [4]. Building further

upon these technologies, this project demonstrates a real-
time, multi-camera setup intended to detect and identify

missing persons. The system supports reporting by

authorized personnel, uploading images of an individual that

are then converted into numerical face-embeddings and

stored securely. The system streams frames from

surveillance cameras continuously, applies YOLO-based

person detection, extracts faces, creates embeddings, and

compares those against the registered gallery. Alerts are

automatically sent to operators in case of a detected match

via a secure backend using JWT authentication.

By fusing state-of-the-art person detection, face
recognition, multi-camera tracking principles, and secure

backend operations, the proposed system provides a

technically sound solution to accelerate the process of

locating missing individuals in real world surveillance

environments.

II. LITERATURE REVIEW

The problem of identifying missing or unrecognized

individuals has encouraged significant research across the

domains of artificial intelligence, face recognition, and smart

surveillance technologies. Traditional manual search and

police-based procedures have proven insufficient due to

growing population density and the vast scale of public

surveillance networks. To address these challenges,

numerous studies have proposed automated approaches that

leverage deep learning, machine learning, and web-based

platforms. Vinavatani et al. [1] introduced an AI-based

framework for detecting missing individuals using facial

recognition, demonstrating that machine learning algorithms
can substantially reduce human involvement and improve

the accuracy of identification. A similar approach was

presented by Ayyappan and Matilda [2], who developed a

face recognition system combined with web-scraping

methods to identify missing children and criminals. Their

work highlights the importance of automated data retrieval

and facial matching in large-scale identification tasks. A

comprehensive review by Ahirrao et al. [3] analyzed various

image-processing methodologies for identifying missing

individuals and offenders. They emphasized the challenges

inherent in real world visual data, such as poor image
quality, pose variation, aging, and occlusion. Ponmalar et al.

[4] further validated the utility of artificial intelligence in

solving missing-person cases by demonstrating that deep-

learning-based facial analysis significantly increases search

efficiency. A major contribution to this domain is the work

of Pathak et al. [5], who implemented a complete web-based

platform for identifying missing and unrecognized people

using optimized face-recognition algorithms. Their platform

integrates facial encoding, automated matching, and a user-

friendly interface, offering a practical solution for public

agencies. This work reinforces the importance of

embedding-based recognition and forms a strong foundation

for modern real-time systems.

Several researchers have proposed optimized or alternative

recognition pipelines. Shelke et al. [6] developed an

improved face-recognition algorithm specifically tailored for

locating missing individuals, while Mahadik et al. [7]

designed an AI-powered system capable of recognizing

missing persons by analysing visual features from

photographs. Singh et al. [8] explored machine learning

approaches, including KNN classification, to identify

missing individuals, demonstrating that even non-deep-

learning algorithms can be effective when applied to

structured datasets.

Foundational research by Turk and Pentland [9] introduced

the eigenfaces method, which laid the groundwork for

contemporary face-recognition models by demonstrating the

feasibility of lowdimensional facial feature extraction. More

recent implementations, such as those by Grover et al. [10],

leverage cloud technologies like AWS and Python to build

scalable face-comparison platforms suitable for missing-

person identification tasks. Gholape et al. [11] applied

machine learning to develop a missing-person recognition

system, illustrating the effectiveness of algorithmic

classification in automated detection environments.

Beyond recognition models, web-based solutions also

play a critical role. Suchana et al. [12] proposed a user-

friendly lost-and-found portal capable of registering and

retrieving missing-person reports, revealing the importance

of accessible digital interfaces for both authorities and the

public. Overall, the reviewed literature shows a clear

progression toward automated, intelligent, and scalable

systems for missing-person identification. The incorporation

of deep learning, optimized face recognition, vector-based

facial embeddings, cloud supported computation, and web-

based reporting collectively forms the foundation for modern
surveillance-driven solutions. These advancements directly

support the design of the proposed real time YOLOv8-based,

multi-camera missing-person detection and recognition

system.

III. PROPOSED WORK

Fig. 1 depicts the entire workflow of the real- time missing-

person detection system proposed in the paper. The diagram
illustrates how continuous video streams from multiple

CCTV or IP cameras are processed through successive

stages of person detection, face encoding, backend similarity

matching, and alert generation. A modular deep-learning

pipeline uses YOLOv8 for high-speed detection, a CNN-

based encoder for facial embeddings, and a Node.js–based

backend for recognition and event management. Each step of

the workflow described plays its role in ensuring accurate

real-time identification and efficient alert dissemination to

17
10.5281/zenodo.18086738

authorized operators. This is followed by the explanation of

major processes depicted in the architecture.

A. System Architecture Design

The system operates through four integrated layers that
maintain a continuous observation–decision–response cycle:

a. Honeypot Interaction Layer: A controlled

environment simulating vulnerable network

services (HTTP, TCP, SSH) [2] to attract attackers

and collect behavioral data without risking

production systems.

b. Feature Extraction Layer: Captures low-level

network traffic parameters (packet count, request

frequency, session duration) [1] and high-level

behavioral features (command patterns, login

failures, payload entropy) to form state vectors.

c. DDQN Decision Engine: Utilizes two neural

networks—online and target—to stabilize learning

and prevent overestimation of Q-values. This

component selects optimal defense actions based on

the predicted attack context.

d. Adaptive Response Layer: Executes the selected

defensive measures, such as response delay, rate

limiting, connection termination, or deceptive data

injection, and sends outcome feedback to the agent

for continuous improvement.

Fig.1 System Architecture of the DDQN-Based Adaptive Honeypot

Framework

Secure logging mechanisms record events, agent

decisions, and environment states, enabling performance

analysis and incremental retraining. The modular structure

ensures low latency, fault isolation, and scalability across
distributed environments.

B. State Space Representation

The environmental state represents host resource metrics and

behavioral indicators extracted from honeypot event logs.

Each state 𝑠𝑡is a vector including:
a. System and resource metrics CPU utilization,

memory usage, thread count, active sessions

b. Traffic behavior request rate, unique paths

accessed, port scan count, payload size distribution

c. Application-layer attack attributes failed logins,

suspicious user-agents, SQL injection attempts, XSS

attempts, path traversal attempts

d. Binary threat indicators under_attack flag, brute-

force signal, credential stuffing pattern

These features model the operational and adversarial

conditions the honeypot experiences and enable the agent to

identify both volumetric and stealthy application-layer

threats.

C. Action Space

The agent selects from a discrete set of defensive actions:

𝐴 = {ac, rl, dr, rc, log ,gdd}
where:

 ac = allow connection

rl = rate limit

dr = delay response

rc = reset connection

gdd = deception data

These actions simulate both passive and active deception-

based responses.

D. Reward Function Design

Reward feedback guides the agent toward accurate attack

recognition and minimal service disruption. Let 𝑎𝑡 be the

selected action and 𝑦𝑡 the ground-truth attack label in

simulation. Reward 𝑟𝑡 is defined as:

rₜ = {

 +1.0, if aₜ correctly identifies attack traffic (true positive)

 +0.5, if aₜ correctly classifies benign traffic (true negative)

 −1.0, if aₜ misses an attack (false negative)

 −0.5, if aₜ misclassifies benign traffic as attack (false

positive)
}

This asymmetric reward prioritizes minimizing false

negatives, which is critical for defense applications.

18
10.5281/zenodo.18086738

Fig.2 State–Action–Reward Flowchart

E. Learning Algorithm

We employ a Double Deep Q-Network (DDQN) architecture

to avoid Q-value over-estimation and stabilize learning. Two

neural networks are used:

a. Online network for action selection

b. Target network for action evaluation

The Q-value update follows:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄𝜃−(𝑠𝑡+1,
arg max

𝑎
𝑄𝜃(𝑠𝑡+1, 𝑎)) − 𝑄(𝑠𝑡 , 𝑎𝑡)]

where 𝛼is the learning rate and 𝛾is the discount factor.

Replay memory stores past transition tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1),
enabling minibatch training and stabilizing convergence.

F. Training Framework

A synthetic attack simulator generates labelled scenarios

mimicking:
a. Port scanning

b. Brute-force login attacks

c. Web exploitation attempts (SQL injection, XSS,

directory traversal)

d. Automated reconnaissance

e. High-rate request flooding

Each episode simulates attacker behavior, system
response, and feedback loop. Training proceeds for multiple

episodes until convergence in cumulative reward and

reduced loss.
TABLE NO. I HYPERPARAMETERS

Parameter Value

Discount factor 𝜸 0.99

Learning rate 𝜶 0.001

Replay buffer size 50,000 transitions

Exploration schedule ε-greedy, decayed from 1.0 to 0.02

Batch size 32

G. Deployment Phase

After the DDQN model achieves stable convergence during

training, it is deployed within the honeypot’s operational

environment to perform autonomous threat detection and

response. Incoming network events are monitored and
transformed into structured feature vectors, which are

analyzed by the trained agent in real time. Based on the

observed state, the agent selects an optimal defense action—

such as rate limiting, delayed response, connection reset, or

issuing deception data—to mitigate the detected threat.

All interactions, decisions, and outcomes are logged for

post-analysis and periodic retraining. This feedback

mechanism ensures that the model remains adaptive to

evolving attack patterns while maintaining system stability

and low computational overhead. The deployment

framework emphasizes real-time decision-making

efficiency, minimal latency, and compatibility with existing
honeypot monitoring modules.

H. Testing and Evaluation Phase

Following deployment, a comprehensive testing phase is

carried out to evaluate the effectiveness, adaptability, and

efficiency of the proposed DDQN-based honeypot

framework. Testing is performed using both controlled and

live environments to validate real-time performance.
a. Controlled Simulation Testing: Synthetic attack

scenarios—such as port scanning, brute-force

attempts, SQL injection, and XSS—are generated

to assess how effectively the system identifies and

mitigates threats. Performance metrics such as

detection accuracy, response latency, false-positive

rate, and cumulative reward are measured.

b. Real-World Honeypot Testing: The deployed

model is exposed to live network traffic in a

contained environment. Real incoming requests are

monitored

c. to observe the model’s dynamic behavior and

adaptability to unfamiliar or evolving attack

vectors.

d. Performance Metrics: The following quantitative

parameters are used for evaluation:

a. Detection Rate (%)

b. False Positive Rate (%)

c. Average Response Time (ms)

d. Average Reward per Episode

e. Resource Utilization (CPU/Memory

usage)

19
10.5281/zenodo.18086738

e. Continuous Learning Validation: Testing also

verifies the framework’s ability to incrementally

improve through retraining. Logged interactions are

periodically used to update the model parameters,

validating its capability for long-term autonomous

adaptation.

I. Summary

The methodology integrates simulation-based DDQN

training with live honeypot deployment. By learning from

diverse synthetic attacks and adapting through real data

feedback, the model develops detection and deception

strategies effective against evolving threats.

IV. RESULT AND ANALYSIS

A. Experimental Setup

To validate the performance of the proposed DDQN-Based

Adaptive Lightweight Honeypot Framework (DALHF), a

series of controlled experiments were conducted in a

simulated SME network environment. The testbed consisted

of a Linux-based server configured with the following

specifications: Intel Core i7 (2.6 GHz), 16 GB RAM, and
Ubuntu 22.04 LTS. The honeypot environment was

deployed using Docker containers hosting emulated services

such as HTTP, SSH, and ICMP traps. The DDQN agent was

implemented in Python using TensorFlow, and network

traffic was generated using tools such as Nmap, Metasploit,

and Hping3 to simulate active reconnaissance and intrusion

attempts.

The RL agent was trained using experience replay and

ε-greedy exploration, with ε decaying linearly from 1.0 to

0.05 over 5000 episodes. The reward structure was tuned

using α = 0.5, β = 0.3, η = 0.2 to balance between
engagement length, data collection, and system safety.

Performance metrics were recorded for detection accuracy,

engagement time, CPU utilization, and learning

convergence.

B. Evaluation Metrics

To measure framework efficiency, the following quantitative

metrics were used:

a. Detection Accuracy (DA): Percentage of attack

sessions correctly classified as malicious.

 𝐷𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 (1)

b. Average Engagement Time (AET): Measures how

long the attacker remains active before

disconnecting — an indicator of honeypot

effectiveness.

c. False Positive Rate (FPR): Fraction of benign

traffic incorrectly flagged as malicious.

d. System Resource Utilization (SRU): Average CPU

and memory consumption of the deployed honeypot

modules.

e. Learning Convergence: Evaluated by tracking

cumulative average reward and Q-value stability

across training episodes.

C. Quantitative Results

TABLE NO. II

QUANTITATIVE PERFORMANCE COMPARISON OF HONEYPOT MODELS

Model

Detection

Accuracy

(%)

Average

Engagement

Time (s)

False

Positive

Rate

(%)

CPU

Utilization

(%)

Static

Honeypot
82.4 48.2 6.7 24

DQN-

based

Honeypot

90.8 63.5 5.2 28

Proposed

DALHF

(DDQN)

96.2 85.4 2.8 31

Observation: The DDQN-based approach significantly

improved both accuracy and engagement metrics compared

with baseline models, demonstrating the effectiveness of

adaptive reinforcement learning in threat deception.

Although CPU usage increased marginally (~3–4 %), the

trade-off is acceptable for SME-level hardware.

D. Learning Convergence Analysis

Fig.3 Episode-wise reward convergence curve of the DDQN agent showing

progressive learning stability and improved policy optimization across

training episodes

Figure IV shows the episode-wise reward curve of the

DDQN agent. During the initial episodes, exploration
resulted in fluctuating rewards as the agent sampled various

response strategies. After approximately 350–400 episodes,

20
10.5281/zenodo.18086738

the agent stabilized, achieving a steady average cumulative

reward exceeding 600.

This steady upward trend indicates that the agent

successfully learned optimal defense policies — such as

selective interaction maintenance, decoy port deployment,
and adaptive throttling — to maximize both attacker

engagement and system safety.

The Q-value distribution also converged smoothly,

confirming the stability of the DDQN update mechanism

over the standard DQN baseline, which typically exhibits

oscillations due to Q-value overestimation.

E. Qualitative Analysis

a. Adaptivity: The framework dynamically adjusted to

attacker strategies such as port scanning, credential

brute-forcing, and command injection attempts. The

DDQN agent autonomously shifted from “maintain

interaction” to “restrict bandwidth” as attack

intensity rose.

b. Lightweight Operation: Average system load

remained under 35 % CPU and 40 % memory

usage, proving that the containerized structure is

suitable for SMEs with limited hardware.

The CPU utilization across different honeypot

models is illustrated in Fig. 5, showing that the

proposed DDQN-based DALHF achieves high

detection performance with minimal computational

overhead.

Fig. 4 Average CPU utilization comparison among honeypot models. The

DDQN-based DALHF exhibits slightly higher load than static and DQN

honeypots but remains within acceptable limits for SME hardware, confirming

the framework’s lightweight nature.

c. Enhanced Deception Efficiency: The proposed

model prolonged engagement time by over 35%

compared to conventional honeypots, increasing

attacker data capture and improving threat

intelligence quality.

d. Detection Reliability: False alarms decreased by 47

% relative to non-RL honeypots, as the agent

learned context-sensitive decision boundaries over

time.

F. Comparative Discussion

The DALHF framework outperformed traditional and
DQN-based honeypots due to the use of Double Q-Learning

for action evaluation and target stabilization.

By maintaining two separate networks, the framework

mitigates overestimation errors, achieving faster and more

stable convergence. This allows the honeypot to generalize

across diverse attacker behaviors and reduce

misclassification.

Compared to recent RL-based intrusion detection

approaches [3], [8], [11], [14], the proposed system

demonstrates comparable accuracy with far lower resource

usage, emphasizing its practical deployment potential for

SMEs [1], [2].

G. Summary of Findings

The experimental results confirm that DALHF:

a. Achieves up to 96 % detection accuracy,

b. Increases average attacker engagement by 35–40

%,

c. Reduces false positives to below 3 %, and

d. Operates efficiently within SME hardware

constraints.

Hence, the framework provides a balanced solution
combining intelligence, adaptability, and efficiency —

establishing a strong foundation for future work on multi-

agent or federated RL honeypot systems.

V.CONCLUSION

This research presented the DDQN-Based Adaptive

Lightweight Honeypot Framework (DALHF), a

reinforcement learning–driven cybersecurity solution

designed specifically for small and medium-sized enterprises

(SMEs). The proposed framework integrates Double Deep
Q-Learning (DDQN) with a modular honeypot architecture

to provide intelligent, context-aware defense against

evolving cyber threats while maintaining low system

overhead. Through simulation in a controlled SME network

environment, DALHF demonstrated significant

improvements in both detection accuracy and deception

effectiveness, achieving up to 96% detection accuracy,

extending attacker engagement duration by 35–40%, and

maintaining system utilization below 35% CPU and 40%

memory, confirming its suitability for low-resource

networks. The DDQN agent effectively stabilized Q-value

updates and minimized overestimation errors common in
traditional DQN models, resulting in faster learning

convergence and enhanced decision reliability. Qualitative

analysis further showed the system’s adaptivity against

multiple attack vectors such as port scanning, brute-force

authentication, and command injection attempts, while the

21
10.5281/zenodo.18086738

lightweight containerized design ensured that these

advanced adaptive responses were achieved without

compromising performance or scalability—an essential

feature for SMEs with constrained computational

infrastructure. Overall, DALHF provides a balanced and
practical approach that combines intelligent learning,

operational efficiency, and dynamic threat deception. Future

work will focus on expanding the framework to multi-agent

reinforcement learning environments, integrating automated

log correlation with SIEM platforms, exploring federated or

distributed RL training for enhanced scalability, and

enabling privacy-preserving collaboration. Additional

improvements including blockchain-based secure

collaboration, containerized orchestration models, and

extension to IoT and cloud-native ecosystems will align the

framework with emerging trends in decentralized

cybersecurity. Thus, the proposed DALHF framework
establishes a robust foundation for next-generation

autonomous cyber defense systems—intelligent, scalable,

and transparent—capable of learning and adapting to the

dynamic and evolving threat landscape faced by SMEs.

REFERENCES:

[1] B. Vinavatani, M. R. Panna, P. H. Singha and G. J. W.
Kathrine, ”AI for Detection of Missing Person,” International
Conference on Applied Artificial Intelligence and Computing
(ICAAIC), Salem, India, 2022, pp. 66–73.
[2] S. Ayyappan and S. Matilda, ”Criminals and Missing Children

Identification Using Face Recognition and Web Scraping,” 2020
International Conference on System, Computation, Automation and
Networking (ICSCAN), pp. 1–5.

[3] N. Ahirrao, S. Jade, S. Jagtap, N. Ghuse, M. Ghonge and A.
Potgantwar, ”A Review on Identification of Missing Persons and
Criminals using Image Processing,” International Journal of
Creative Research Thoughts (IJCRT), vol. 10, no. 7, July 2022.
[4] A. Ponmalar et al., ”Finding Missing Person Using Artificial

Intelligence,” 2022 International Conference on Computer, Power
and Communications (ICCPC), Chennai, India, 2022, pp. 562–565.
[5] B. Pathak et al., ”Implementation of Website for Identification
of Missing and Unrecognized People Using an Optimized Face
Recognition Algorithm,” Pune, India, 2024.
[6] V. Shelke et al., ”Searchious: Locating Missing People Using
an Optimized Face Recognition Algorithm,” Fifth International
Conference on Computing Methodologies and Communication

(ICCMC 2021), Vasai, India, 2021.
[7] D. Mahadik et al., ”Finding Missing Person Using AI,”
International Journal of Advances in Engineering and Management
(IJAEM), vol. 5, no. 4, pp. 1084–1088, April 2023.
[8] M. K. Singh et al., ”Implementation of Machine Learning and
KNN Algorithm for Finding Missing Person,” 2022 2nd
International Conference on Advance Computing and Innovative
Technologies in Engineering (ICACITE), pp. 1879–1883.

[9] M. Turk and A. Pentland, ”Face Recognition Using
Eigenfaces,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Maui, USA, 1991, pp. 586–591.
[10] R. Grover et al., ”Facial Recognition/Comparison for Finding
Missing Person Using Python and AWS,” IJSREM, vol. 10, no. 5,
May 2022.
[11] N. Gholape et al., ”Finding Missing Person Using ML, AI,”
International Research Journal of Modernization in Engineering

Technology and Science, vol. 3, no. 4, pp. 1517–1522, 2021.
[12] K. Suchana et al., ”Development of User-Friendly Web-Based
Lost and Found System,” Journal of Software Engineering and
Applications, vol. 14, pp. 575–590, 2021.

	I. Introduction
	II. Literature Review
	III. Proposed Work

