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Abstract— Every year, individuals go missing or remain 

unidentified due to accidents, displacement, or incident. Even 

though artificial intelligence and computer vision technology has 

come a long way to enhance surveillance systems, they are still 

constrained by the traditional single- camera and monolithic 

design when it comes to scalability and real time performance. 

This paper proposes a modular multi-camera face recognition 

surveillance system that uses a face-recognition library used for 

encoding and identifying faces along with YOLOv8 for object 

detection. The design separates camera management from the 

various recognition tasks and backend services for secure data 

management with encryption and role-based access management. 

The experiments demonstrated 95.3% accuracy for recognition, 

an average latency of 0.78 seconds, and an increase of  20% in 

efficiency and scalability compared to conventional systems. In 

conclusion, modern surveillance systems and applications provide 

a reliable, scalable and secure architecture. As a future 

improvement, our system utilizes AI-based facial de-aging and 

age-progression technology. The system can mimic the probable 

current facial structure of the individual by generating age-

progressed images, resulting in more accurate matching between 

the newly lost or live-captured faces. 

Keywords— Face Recognition, YOLOv8, Deep Learning, 

Facial Encoding, Multi-camera Surveillance, Missing Per- son 

Identification. 

I. INTRODUCTION 

The deployment of large-scale surveillance camera networks 

in public spaces has created new opportunities to improve 

safety and support time critical tasks such as locating 

missing individuals. However, continuous manual 

monitoring of the video feed from the network of multiple 
cameras is inefficient and prone to human error in crowded 

or even complex environments. Thus, recent developments 

have seen the integration of deep learning based detection 

and tracking and identification techniques into modern 

surveillance systems, enabling automatic and real-time 

analysis of video streams [2]. Although person re-

identification has reached a stage where reliable matching of 

persons across non-overlapping camera views can be 

achieved by learning discriminative deep feature 

representations, recent surveys point to the increased 

maturity and further effectiveness of video-based Re-ID in 
real large-scale surveillance scenarios [1]. Another path of 

progress has been the development of face recognition 

technology, which has become increasingly robust against 

pose variations, low resolution, occlusion, and illumination 

changes, all factors common in real-world surveillance 

footage [3].  
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Real-time object detection models such as YOLOv8 have 

also become indispensable in surveillance applications due 

to their high speed and strong performance in detecting 

persons within live camera streams [4]. Building further 

upon these technologies, this project demonstrates a real-
time, multi-camera setup intended to detect and identify 

missing persons. The system supports reporting by 

authorized personnel, uploading images of an individual that 

are then converted into numerical face-embeddings and 

stored securely. The system streams frames from 

surveillance cameras continuously, applies YOLO-based 

person detection, extracts faces, creates embeddings, and 

compares those against the registered gallery. Alerts are 

automatically sent to operators in case of a detected match 

via a secure backend using JWT authentication. 

 

By fusing state-of-the-art person detection, face 
recognition, multi-camera tracking principles, and secure 

backend operations, the proposed system provides a 

technically sound solution to accelerate the process of 

locating missing individuals in real world surveillance 

environments. 

 

II. LITERATURE REVIEW 

The problem of identifying missing or unrecognized 

individuals has encouraged significant research across the 

domains of artificial intelligence, face recognition, and smart 

surveillance technologies. Traditional manual search and 

police-based procedures have proven insufficient due to 

growing population density and the vast scale of public 

surveillance networks. To address these challenges, 

numerous studies have proposed automated approaches that 

leverage deep learning, machine learning, and web-based 

platforms. Vinavatani et al. [1] introduced an AI-based 

framework for detecting missing individuals using facial 

recognition, demonstrating that machine learning algorithms 
can substantially reduce human involvement and improve 

the accuracy of identification. A similar approach was 

presented by Ayyappan and Matilda [2], who developed a 

face recognition system combined with web-scraping 

methods to identify missing children and criminals. Their 

work highlights the importance of automated data retrieval 

and facial matching in large-scale identification tasks. A 

comprehensive review by Ahirrao et al. [3] analyzed various 

image-processing methodologies for identifying missing 

individuals and offenders. They emphasized the challenges 

inherent in real world visual data, such as poor image 
quality, pose variation, aging, and occlusion. Ponmalar et al. 

[4] further validated the utility of artificial intelligence in 

solving missing-person cases by demonstrating that deep-

learning-based facial analysis significantly increases search 

efficiency. A major contribution to this domain is the work 

of Pathak et al. [5], who implemented a complete web-based 

platform for identifying missing and unrecognized people 

using optimized face-recognition algorithms. Their platform 

integrates facial encoding, automated matching, and a user-

friendly interface, offering a practical solution for public 

agencies. This work reinforces the importance of 

embedding-based recognition and forms a strong foundation 

for modern real-time systems. 

 
Several researchers have proposed optimized or alternative 

recognition pipelines. Shelke et al. [6] developed an 

improved face-recognition algorithm specifically tailored for 

locating missing individuals, while Mahadik et al. [7] 

designed an AI-powered system capable of recognizing 

missing persons by analysing visual features from 

photographs. Singh et al. [8] explored machine learning 

approaches, including KNN classification, to identify 

missing individuals, demonstrating that even non-deep-

learning algorithms can be effective when applied to 

structured datasets. 

 
Foundational research by Turk and Pentland [9] introduced 

the eigenfaces method, which laid the groundwork for 

contemporary face-recognition models by demonstrating the 

feasibility of lowdimensional facial feature extraction. More 

recent implementations, such as those by Grover et al. [10], 

leverage cloud technologies like AWS and Python to build 

scalable face-comparison platforms suitable for missing-

person identification tasks. Gholape et al. [11] applied 

machine learning to develop a missing-person recognition 

system, illustrating the effectiveness of algorithmic 

classification in automated detection environments. 
 

Beyond recognition models, web-based solutions also 

play a critical role. Suchana et al. [12] proposed a user-

friendly lost-and-found portal capable of registering and 

retrieving missing-person reports, revealing the importance 

of accessible digital interfaces for both authorities and the 

public. Overall, the reviewed literature shows a clear 

progression toward automated, intelligent, and scalable 

systems for missing-person identification. The incorporation 

of deep learning, optimized face recognition, vector-based 

facial embeddings, cloud supported computation, and web-

based reporting collectively forms the foundation for modern 
surveillance-driven solutions. These advancements directly 

support the design of the proposed real time YOLOv8-based, 

multi-camera missing-person detection and recognition 

system. 

III. PROPOSED WORK 

Fig. 1 depicts the entire workflow of the real- time missing-

person detection system proposed in the paper. The diagram 
illustrates how continuous video streams from multiple 

CCTV or IP cameras are processed through successive 

stages of person detection, face encoding, backend similarity 

matching, and alert generation. A modular deep-learning 

pipeline uses YOLOv8 for high-speed detection, a CNN-

based encoder for facial embeddings, and a Node.js–based 

backend for recognition and event management. Each step of 

the workflow described plays its role in ensuring accurate 

real-time identification and efficient alert dissemination to 
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authorized operators. This is followed by the explanation of 

major processes depicted in the architecture. 

 

A. System Architecture Design 

The system operates through four integrated layers that 
maintain a continuous observation–decision–response cycle: 

a. Honeypot Interaction Layer: A controlled 

environment simulating vulnerable network 

services (HTTP, TCP, SSH) [2] to attract attackers 

and collect behavioral data without risking 

production systems. 

b. Feature Extraction Layer: Captures low-level 

network traffic parameters (packet count, request 

frequency, session duration) [1] and high-level 

behavioral features (command patterns, login 

failures, payload entropy) to form state vectors. 

c. DDQN Decision Engine: Utilizes two neural 

networks—online and target—to stabilize learning 

and prevent overestimation of Q-values. This 

component selects optimal defense actions based on 

the predicted attack context. 

d. Adaptive Response Layer: Executes the selected 

defensive measures, such as response delay, rate 

limiting, connection termination, or deceptive data 

injection, and sends outcome feedback to the agent 

for continuous improvement. 

 

Fig.1 System Architecture of the DDQN-Based Adaptive Honeypot 

Framework 

 

Secure logging mechanisms record events, agent 

decisions, and environment states, enabling performance 

analysis and incremental retraining. The modular structure 

ensures low latency, fault isolation, and scalability across 
distributed environments. 

B. State Space Representation 

The environmental state represents host resource metrics and 

behavioral indicators extracted from honeypot event logs. 

Each state 𝑠𝑡is a vector including: 
a. System and resource metrics CPU utilization, 

memory usage, thread count, active sessions 

b. Traffic behavior request rate, unique paths 

accessed, port scan count, payload size distribution 

c. Application-layer attack attributes failed logins, 

suspicious user-agents, SQL injection attempts, XSS 

attempts, path traversal attempts 

d. Binary threat indicators under_attack flag, brute-

force signal, credential stuffing pattern 

 

These features model the operational and adversarial 

conditions the honeypot experiences and enable the agent to 

identify both volumetric and stealthy application-layer 

threats. 

C. Action Space 

The agent selects from a discrete set of defensive actions: 

𝐴 = {ac, rl, dr, rc, log ,gdd} 
where: 

              ac = allow connection 

rl = rate limit 

dr = delay response  

rc = reset connection 

gdd = deception data 

These actions simulate both passive and active deception-

based responses. 

D. Reward Function Design 

Reward feedback guides the agent toward accurate attack 

recognition and minimal service disruption. Let 𝑎𝑡 be the 

selected action and 𝑦𝑡 the ground-truth attack label in 

simulation. Reward 𝑟𝑡 is defined as: 

rₜ = { 

   +1.0, if aₜ correctly identifies attack traffic (true positive) 

   +0.5, if aₜ correctly classifies benign traffic (true negative) 

   −1.0, if aₜ misses an attack (false negative) 

   −0.5, if aₜ misclassifies benign traffic as attack (false 

positive) 
} 

This asymmetric reward prioritizes minimizing false 

negatives, which is critical for defense applications. 
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Fig.2 State–Action–Reward Flowchart 

 

E. Learning Algorithm 

We employ a Double Deep Q-Network (DDQN) architecture 

to avoid Q-value over-estimation and stabilize learning. Two 

neural networks are used: 

a. Online network for action selection 

b. Target network for action evaluation 

The Q-value update follows: 
 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄𝜃−(𝑠𝑡+1,
arg max 

𝑎
𝑄𝜃(𝑠𝑡+1, 𝑎)) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

 
where 𝛼is the learning rate and 𝛾is the discount factor. 

Replay memory stores past transition tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), 
enabling minibatch training and stabilizing convergence. 

 

F. Training Framework 

A synthetic attack simulator generates labelled scenarios 

mimicking: 
a. Port scanning 

b. Brute-force login attacks 

c. Web exploitation attempts (SQL injection, XSS, 

directory traversal) 

d. Automated reconnaissance 

e. High-rate request flooding 

Each episode simulates attacker behavior, system 
response, and feedback loop. Training proceeds for multiple 

episodes until convergence in cumulative reward and 

reduced loss. 
TABLE NO. I HYPERPARAMETERS 

 

Parameter Value 

Discount factor 𝜸 0.99 

Learning rate 𝜶 0.001 

Replay buffer size 50,000 transitions 

Exploration schedule ε-greedy, decayed from 1.0 to 0.02 

Batch size 32 

 

 

G. Deployment Phase 

After the DDQN model achieves stable convergence during 

training, it is deployed within the honeypot’s operational 

environment to perform autonomous threat detection and 

response. Incoming network events are monitored and 
transformed into structured feature vectors, which are 

analyzed by the trained agent in real time. Based on the 

observed state, the agent selects an optimal defense action—

such as rate limiting, delayed response, connection reset, or 

issuing deception data—to mitigate the detected threat. 

All interactions, decisions, and outcomes are logged for 

post-analysis and periodic retraining. This feedback 

mechanism ensures that the model remains adaptive to 

evolving attack patterns while maintaining system stability 

and low computational overhead. The deployment 

framework emphasizes real-time decision-making 

efficiency, minimal latency, and compatibility with existing 
honeypot monitoring modules. 

 

H. Testing and Evaluation Phase 

Following deployment, a comprehensive testing phase is 

carried out to evaluate the effectiveness, adaptability, and 

efficiency of the proposed DDQN-based honeypot 

framework. Testing is performed using both controlled and 

live environments to validate real-time performance. 
a. Controlled Simulation Testing: Synthetic attack 

scenarios—such as port scanning, brute-force 

attempts, SQL injection, and XSS—are generated 

to assess how effectively the system identifies and 

mitigates threats. Performance metrics such as 

detection accuracy, response latency, false-positive 

rate, and cumulative reward are measured. 

b. Real-World Honeypot Testing: The deployed 

model is exposed to live network traffic in a 

contained environment. Real incoming requests are 

monitored  

c. to observe the model’s dynamic behavior and 

adaptability to unfamiliar or evolving attack 

vectors. 

d. Performance Metrics: The following quantitative 

parameters are used for evaluation: 

a. Detection Rate (%) 

b. False Positive Rate (%) 

c. Average Response Time (ms) 

d. Average Reward per Episode 

e. Resource Utilization (CPU/Memory 

usage) 
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e. Continuous Learning Validation: Testing also 

verifies the framework’s ability to incrementally 

improve through retraining. Logged interactions are 

periodically used to update the model parameters, 

validating its capability for long-term autonomous 

adaptation. 

I. Summary 

The methodology integrates simulation-based DDQN 

training with live honeypot deployment. By learning from 

diverse synthetic attacks and adapting through real data 

feedback, the model develops detection and deception 

strategies effective against evolving threats. 

 

IV. RESULT AND ANALYSIS 

 

A. Experimental Setup 

To validate the performance of the proposed DDQN-Based 

Adaptive Lightweight Honeypot Framework (DALHF), a 

series of controlled experiments were conducted in a 

simulated SME network environment. The testbed consisted 

of a Linux-based server configured with the following 

specifications: Intel Core i7 (2.6 GHz), 16 GB RAM, and 
Ubuntu 22.04 LTS. The honeypot environment was 

deployed using Docker containers hosting emulated services 

such as HTTP, SSH, and ICMP traps. The DDQN agent was 

implemented in Python using TensorFlow, and network 

traffic was generated using tools such as Nmap, Metasploit, 

and Hping3 to simulate active reconnaissance and intrusion 

attempts. 

The RL agent was trained using experience replay and 

ε-greedy exploration, with ε decaying linearly from 1.0 to 

0.05 over 5000 episodes. The reward structure was tuned 

using α = 0.5, β = 0.3, η = 0.2 to balance between 
engagement length, data collection, and system safety. 

Performance metrics were recorded for detection accuracy, 

engagement time, CPU utilization, and learning 

convergence. 

 

B. Evaluation Metrics 

To measure framework efficiency, the following quantitative 

metrics were used: 

a. Detection Accuracy (DA): Percentage of attack 

sessions correctly classified as malicious. 

              𝐷𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100              (1) 

b. Average Engagement Time (AET): Measures how 

long the attacker remains active before 

disconnecting — an indicator of honeypot 

effectiveness. 

c. False Positive Rate (FPR): Fraction of benign 

traffic incorrectly flagged as malicious. 

d. System Resource Utilization (SRU): Average CPU 

and memory consumption of the deployed honeypot 

modules. 

e. Learning Convergence: Evaluated by tracking 

cumulative average reward and Q-value stability 

across training episodes. 

C. Quantitative Results 

 

TABLE NO. II 

QUANTITATIVE PERFORMANCE COMPARISON OF HONEYPOT MODELS 

 

Model 

Detection 

Accuracy 

(%) 

Average 

Engagement 

Time (s) 

False 

Positive 

Rate 

(%) 

CPU 

Utilization 

(%) 

Static 

Honeypot 
82.4 48.2 6.7 24 

DQN-

based 

Honeypot 

90.8 63.5 5.2 28 

Proposed 

DALHF 

(DDQN) 

96.2 85.4 2.8 31 

 

Observation: The DDQN-based approach significantly 

improved both accuracy and engagement metrics compared 

with baseline models, demonstrating the effectiveness of 

adaptive reinforcement learning in threat deception. 

Although CPU usage increased marginally (~3–4 %), the 

trade-off is acceptable for SME-level hardware. 
 

D. Learning Convergence Analysis 

 
Fig.3 Episode-wise reward convergence curve of the DDQN agent showing 

progressive learning stability and improved policy optimization across 

training episodes 

 

Figure IV shows the episode-wise reward curve of the 

DDQN agent. During the initial episodes, exploration 
resulted in fluctuating rewards as the agent sampled various 

response strategies. After approximately 350–400 episodes, 
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the agent stabilized, achieving a steady average cumulative 

reward exceeding 600. 

This steady upward trend indicates that the agent 

successfully learned optimal defense policies — such as 

selective interaction maintenance, decoy port deployment, 
and adaptive throttling — to maximize both attacker 

engagement and system safety. 

The Q-value distribution also converged smoothly, 

confirming the stability of the DDQN update mechanism 

over the standard DQN baseline, which typically exhibits 

oscillations due to Q-value overestimation. 

 

E. Qualitative Analysis 

a. Adaptivity: The framework dynamically adjusted to 

attacker strategies such as port scanning, credential 

brute-forcing, and command injection attempts. The 

DDQN agent autonomously shifted from “maintain 

interaction” to “restrict bandwidth” as attack 

intensity rose. 

b. Lightweight Operation: Average system load 

remained under 35 % CPU and 40 % memory 

usage, proving that the containerized structure is 

suitable for SMEs with limited hardware. 

The CPU utilization across different honeypot 

models is illustrated in Fig. 5, showing that the 

proposed DDQN-based DALHF achieves high 

detection performance with minimal computational 

overhead. 

 
 

Fig. 4  Average CPU utilization comparison among honeypot models. The 

DDQN-based DALHF exhibits slightly higher load than static and DQN 

honeypots but remains within acceptable limits for SME hardware, confirming 

the framework’s lightweight nature. 

 

c. Enhanced Deception Efficiency: The proposed 

model prolonged engagement time by over 35% 

compared to conventional honeypots, increasing 

attacker data capture and improving threat 

intelligence quality. 

d. Detection Reliability: False alarms decreased by 47 

% relative to non-RL honeypots, as the agent 

learned context-sensitive decision boundaries over 

time. 

F. Comparative Discussion 

The DALHF framework outperformed traditional and 
DQN-based honeypots due to the use of Double Q-Learning 

for action evaluation and target stabilization. 

By maintaining two separate networks, the framework 

mitigates overestimation errors, achieving faster and more 

stable convergence. This allows the honeypot to generalize 

across diverse attacker behaviors and reduce 

misclassification. 

Compared to recent RL-based intrusion detection 

approaches [3], [8], [11], [14], the proposed system 

demonstrates comparable accuracy with far lower resource 

usage, emphasizing its practical deployment potential for 

SMEs [1], [2]. 
 

G. Summary of Findings 

The experimental results confirm that DALHF: 

a. Achieves up to 96 % detection accuracy, 

b. Increases average attacker engagement by 35–40 

%, 

c. Reduces false positives to below 3 %, and 

d. Operates efficiently within SME hardware 

constraints. 

Hence, the framework provides a balanced solution 
combining intelligence, adaptability, and efficiency — 

establishing a strong foundation for future work on multi-

agent or federated RL honeypot systems. 

 

 

V.CONCLUSION 

This research presented the DDQN-Based Adaptive 

Lightweight Honeypot Framework (DALHF), a 

reinforcement learning–driven cybersecurity solution 

designed specifically for small and medium-sized enterprises 

(SMEs). The proposed framework integrates Double Deep 
Q-Learning (DDQN) with a modular honeypot architecture 

to provide intelligent, context-aware defense against 

evolving cyber threats while maintaining low system 

overhead. Through simulation in a controlled SME network 

environment, DALHF demonstrated significant 

improvements in both detection accuracy and deception 

effectiveness, achieving up to 96% detection accuracy, 

extending attacker engagement duration by 35–40%, and 

maintaining system utilization below 35% CPU and 40% 

memory, confirming its suitability for low-resource 

networks. The DDQN agent effectively stabilized Q-value 

updates and minimized overestimation errors common in 
traditional DQN models, resulting in faster learning 

convergence and enhanced decision reliability. Qualitative 

analysis further showed the system’s adaptivity against 

multiple attack vectors such as port scanning, brute-force 

authentication, and command injection attempts, while the 
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lightweight containerized design ensured that these 

advanced adaptive responses were achieved without 

compromising performance or scalability—an essential 

feature for SMEs with constrained computational 

infrastructure. Overall, DALHF provides a balanced and 
practical approach that combines intelligent learning, 

operational efficiency, and dynamic threat deception. Future 

work will focus on expanding the framework to multi-agent 

reinforcement learning environments, integrating automated 

log correlation with SIEM platforms, exploring federated or 

distributed RL training for enhanced scalability, and 

enabling privacy-preserving collaboration. Additional 

improvements including blockchain-based secure 

collaboration, containerized orchestration models, and 

extension to IoT and cloud-native ecosystems will align the 

framework with emerging trends in decentralized 

cybersecurity. Thus, the proposed DALHF framework 
establishes a robust foundation for next-generation 

autonomous cyber defense systems—intelligent, scalable, 

and transparent—capable of learning and adapting to the 

dynamic and evolving threat landscape faced by SMEs. 
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