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Abstract— Every year, individuals go missing or remain
unidentified due to accidents, displacement, or incident. Even
though artificial intelligence and computer vision technology has
come a long way to enhance surveillance systems, they are still
constrained by the traditional single- camera and monolithic
design when it comes to scalability and real time performance.
This paper proposes a modular multi-camera face recognition
surveillance system that uses a face-recognition library used for
encoding and identifying faces along with YOLOv8 for object
detection. The design separates camera management from the
various recognition tasks and backend services for secure data
management with encryption and role-based access management.
The experiments demonstrated 95.3% accuracy for recognition,
an average latency of 0.78 seconds, and an increase of 20% in
efficiency and scalability compared to conventional systems. In
conclusion, modern surveillance systems and applications provide
a reliable, scalable and secure architecture. As a future
improvement, our system utilizes Al-based facial de-aging and
age-progression technology. The system can mimic the probable
current facial structure of the individual by generating age-
progressed images, resulting in more accurate matching between
the newly lost or live-captured faces.

Keywords— Face Recognition, YOLOv8, Deep Learning,

Facial Encoding, Multi-camera Surveillance, Missing Per- son
Identification.
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l. INTRODUCTION

The deployment of large-scale surveillance camera networks
in public spaces has created new opportunities to improve
safety and support time critical tasks such as locating
missing individuals. However, continuous manual
monitoring of the video feed from the network of multiple
cameras is inefficient and prone to human error in crowded
or even complex environments. Thus, recent developments
have seen the integration of deep learning based detection
and tracking and identification techniques into modern
surveillance systems, enabling automatic and real-time
analysis of video streams [2]. Although person re-
identification has reached a stage where reliable matching of
persons across non-overlapping camera views can be
achieved by learning discriminative deep feature
representations, recent surveys point to the increased
maturity and further effectiveness of video-based Re-ID in
real large-scale surveillance scenarios [1]. Another path of
progress has been the development of face recognition
technology, which has become increasingly robust against
pose variations, low resolution, occlusion, and illumination
changes, all factors common in real-world surveillance
footage [3].
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Real-time object detection models such as YOLOV8 have
also become indispensable in surveillance applications due
to their high speed and strong performance in detecting
persons within live camera streams [4]. Building further
upon these technologies, this project demonstrates a real-
time, multi-camera setup intended to detect and identify
missing persons. The system supports reporting by
authorized personnel, uploading images of an individual that
are then converted into numerical face-embeddings and
stored securely. The system streams frames from
surveillance cameras continuously, applies YOLO-based
person detection, extracts faces, creates embeddings, and
compares those against the registered gallery. Alerts are
automatically sent to operators in case of a detected match
via a secure backend using JWT authentication.

By fusing state-of-the-art person detection, face
recognition, multi-camera tracking principles, and secure
backend operations, the proposed system provides a
technically sound solution to accelerate the process of
locating missing individuals in real world surveillance
environments.

1. LITERATURE REVIEW

The problem of identifying missing or unrecognized
individuals has encouraged significant research across the
domains of artificial intelligence, face recognition, and smart
surveillance technologies. Traditional manual search and
police-based procedures have proven insufficient due to
growing population density and the vast scale of public
surveillance networks. To address these challenges,
numerous studies have proposed automated approaches that
leverage deep learning, machine learning, and web-based
platforms. Vinavatani et al. [1] introduced an Al-based
framework for detecting missing individuals using facial
recognition, demonstrating that machine learning algorithms
can substantially reduce human involvement and improve
the accuracy of identification. A similar approach was
presented by Ayyappan and Matilda [2], who developed a
face recognition system combined with web-scraping
methods to identify missing children and criminals. Their
work highlights the importance of automated data retrieval
and facial matching in large-scale identification tasks. A
comprehensive review by Ahirrao et al. [3] analyzed various
image-processing methodologies for identifying missing
individuals and offenders. They emphasized the challenges
inherent in real world visual data, such as poor image
quality, pose variation, aging, and occlusion. Ponmalar et al.
[4] further validated the utility of artificial intelligence in
solving missing-person cases by demonstrating that deep-
learning-based facial analysis significantly increases search
efficiency. A major contribution to this domain is the work
of Pathak et al. [5], who implemented a complete web-based
platform for identifying missing and unrecognized people
using optimized face-recognition algorithms. Their platform
integrates facial encoding, automated matching, and a user-
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friendly interface, offering a practical solution for public
agencies. This work reinforces the importance of
embedding-based recognition and forms a strong foundation
for modern real-time systems.

Several researchers have proposed optimized or alternative
recognition pipelines. Shelke et al. [6] developed an
improved face-recognition algorithm specifically tailored for
locating missing individuals, while Mahadik et al. [7]
designed an Al-powered system capable of recognizing
missing persons by analysing visual features from
photographs. Singh et al. [8] explored machine learning
approaches, including KNN classification, to identify
missing individuals, demonstrating that even non-deep-
learning algorithms can be effective when applied to
structured datasets.

Foundational research by Turk and Pentland [9] introduced
the eigenfaces method, which laid the groundwork for
contemporary face-recognition models by demonstrating the
feasibility of lowdimensional facial feature extraction. More
recent implementations, such as those by Grover et al. [10],
leverage cloud technologies like AWS and Python to build
scalable face-comparison platforms suitable for missing-
person identification tasks. Gholape et al. [11] applied
machine learning to develop a missing-person recognition
system, illustrating the effectiveness of algorithmic
classification in automated detection environments.

Beyond recognition models, web-based solutions also
play a critical role. Suchana et al. [12] proposed a user-
friendly lost-and-found portal capable of registering and
retrieving missing-person reports, revealing the importance
of accessible digital interfaces for both authorities and the
public. Overall, the reviewed literature shows a clear
progression toward automated, intelligent, and scalable
systems for missing-person identification. The incorporation
of deep learning, optimized face recognition, vector-based
facial embeddings, cloud supported computation, and web-
based reporting collectively forms the foundation for modern
surveillance-driven solutions. These advancements directly
support the design of the proposed real time YOLOV8-based,
multi-camera missing-person detection and recognition
system.

1. PrROPOSED WORK

Fig. 1 depicts the entire workflow of the real- time missing-
person detection system proposed in the paper. The diagram
illustrates how continuous video streams from multiple
CCTV or IP cameras are processed through successive
stages of person detection, face encoding, backend similarity
matching, and alert generation. A modular deep-learning
pipeline uses YOLOvV8 for high-speed detection, a CNN-
based encoder for facial embeddings, and a Node.js—based
backend for recognition and event management. Each step of
the workflow described plays its role in ensuring accurate
real-time identification and efficient alert dissemination to
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authorized operators. This is followed by the explanation of
major processes depicted in the architecture.

A System Architecture Design

The system operates through four integrated layers that
maintain a continuous observation—decision—response cycle:
a. Honeypot Interaction Layer: A controlled
environment  simulating  vulnerable  network

services (HTTP, TCP, SSH) [2] to attract attackers

and collect behavioral data without risking
production systems.
b. Feature Extraction Layer: Captures low-level

network traffic parameters (packet count, request
frequency, session duration) [1] and high-level
behavioral features (command patterns, login
failures, payload entropy) to form state vectors.

c. DDQN Decision Engine: Utilizes two neural
networks—online and target—to stabilize learning
and prevent overestimation of Q-values. This
component selects optimal defense actions based on
the predicted attack context.

d. Adaptive Response Layer: Executes the selected
defensive measures, such as response delay, rate
limiting, connection termination, or deceptive data
injection, and sends outcome feedback to the agent
for continuous improvement.

Honeypot Interaction -
Yt | Network Traffic |
Layer

= | Raw Interaction data |

Feature Extraction Layer

Agent Environment
Trained Model [<=

|
]
]
]
- Decision Engine ]
]
]
]
]

Adaptive Response
Layer

Selected Action 1D

Deceptive Response
Chosen

Replay Memory,
Q-Value Update

|

******** Secure Logger |= — =

Fig.1 System Architecture of the DDQN-Based Adaptive Honeypot
Framework

10.5281/zen0do.18086738

Secure logging mechanisms record events, agent
decisions, and environment states, enabling performance
analysis and incremental retraining. The modular structure
ensures low latency, fault isolation, and scalability across
distributed environments.

B. State Space Representation

The environmental state represents host resource metrics and
behavioral indicators extracted from honeypot event logs.
Each state s,is a vector including:
a. System and resource metrics CPU utilization,
memory usage, thread count, active sessions
b. Traffic behavior request rate, unique paths
accessed, port scan count, payload size distribution
c. Application-layer attack attributes failed logins,
suspicious user-agents, SQL injection attempts, XSS
attempts, path traversal attempts
d. Binary threat indicators under_attack flag, brute-
force signal, credential stuffing pattern

These features model the operational and adversarial
conditions the honeypot experiences and enable the agent to
identify both volumetric and stealthy application-layer
threats.

C.  Action Space

The agent selects from a discrete set of defensive actions:
A ={ac, rl, dr, re, log ,gdd}

where:

ac = allow connection

rl = rate limit

dr = delay response

rc = reset connection

gdd = deception data
These actions simulate both passive and active deception-
based responses.

D.  Reward Function Design

Reward feedback guides the agent toward accurate attack
recognition and minimal service disruption. Let a,be the
selected action and y, the ground-truth attack label in
simulation. Reward r;is defined as:
re={
+1.0, if a; correctly identifies attack traffic (true positive)
+0.5, if a; correctly classifies benign traffic (true negative)
—1.0, if a; misses an attack (false negative)
—0.5, if a; misclassifies benign traffic as attack (false
positive)
}

This asymmetric reward prioritizes minimizing false
negatives, which is critical for defense applications.
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Replay Memory:
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Fig.2 State—Action—Reward Flowchart
E. Learning Algorithm

We employ a Double Deep Q-Network (DDQN) architecture
to avoid Q-value over-estimation and stabilize learning. Two
neural networks are used:

a. Online network for action selection

b. Target network for action evaluation

The Q-value update follows:

Q(sp ar) « Q(sp, ap) + afry +¥Qp-(Se41,
arg m&ax Qo (St+1, @) — Q(se, ar)]

where ais the learning rate and yis the discount factor.
Replay memory stores past transition tuples (s;, a;, 7, Sg41);
enabling minibatch training and stabilizing convergence.

F. Training Framework

A synthetic attack simulator generates labelled scenarios
mimicking:

a. Port scanning

b. Brute-force login attacks

c. Web exploitation attempts (SQL injection, XSS,

directory traversal)
d. Automated reconnaissance
e. High-rate request flooding

Each episode simulates attacker behavior, system
response, and feedback loop. Training proceeds for multiple
episodes until convergence in cumulative reward and

reduced loss.
TABLE NO. | HYPERPARAMETERS

Parameter Value
Discount factor y 0.99
Learning rate « 0.001
Replay buffer size 50,000 transitions
Exploration schedule &-greedy, decayed from 1.0 to 0.02
Batch size 32
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G.  Deployment Phase

After the DDQN model achieves stable convergence during
training, it is deployed within the honeypot’s operational
environment to perform autonomous threat detection and
response. Incoming network events are monitored and
transformed into structured feature wvectors, which are
analyzed by the trained agent in real time. Based on the
observed state, the agent selects an optimal defense action—
such as rate limiting, delayed response, connection reset, or
issuing deception data—to mitigate the detected threat.

All interactions, decisions, and outcomes are logged for
post-analysis and periodic retraining. This feedback
mechanism ensures that the model remains adaptive to
evolving attack patterns while maintaining system stability
and low computational overhead. The deployment
framework  emphasizes  real-time  decision-making
efficiency, minimal latency, and compatibility with existing
honeypot monitoring modules.

H.  Testing and Evaluation Phase

Following deployment, a comprehensive testing phase is
carried out to evaluate the effectiveness, adaptability, and
efficiency of the proposed DDQN-based honeypot
framework. Testing is performed using both controlled and
live environments to validate real-time performance.

a. Controlled Simulation Testing: Synthetic attack

scenarios—such as port scanning, brute-force
attempts, SQL injection, and XSS—are generated
to assess how effectively the system identifies and
mitigates threats. Performance metrics such as
detection accuracy, response latency, false-positive
rate, and cumulative reward are measured.

b. Real-World Honeypot Testing: The deployed
model is exposed to live network traffic in a
contained environment. Real incoming requests are
monitored

C. to observe the model’s dynamic behavior and
adaptability to unfamiliar or evolving attack
vectors.

d. Performance Metrics: The following quantitative
parameters are used for evaluation:

a. Detection Rate (%)
b. False Positive Rate (%)
c. Average Response Time (ms)
d. Average Reward per Episode
e. Resource  Utilization  (CPU/Memory
usage)
18



e. Continuous Learning Validation: Testing also
verifies the framework’s ability to incrementally
improve through retraining. Logged interactions are
periodically used to update the model parameters,
validating its capability for long-term autonomous
adaptation.

I Summary

The methodology integrates simulation-based DDQN
training with live honeypot deployment. By learning from
diverse synthetic attacks and adapting through real data
feedback, the model develops detection and deception
strategies effective against evolving threats.

V. RESULT AND ANALYSIS

A. Experimental Setup

To validate the performance of the proposed DDQN-Based
Adaptive Lightweight Honeypot Framework (DALHF), a
series of controlled experiments were conducted in a
simulated SME network environment. The testbed consisted
of a Linux-based server configured with the following
specifications: Intel Core i7 (2.6 GHz), 16 GB RAM, and
Ubuntu 22.04 LTS. The honeypot environment was
deployed using Docker containers hosting emulated services
such as HTTP, SSH, and ICMP traps. The DDQN agent was
implemented in Python using TensorFlow, and network
traffic was generated using tools such as Nmap, Metasploit,
and Hping3 to simulate active reconnaissance and intrusion
attempts.

The RL agent was trained using experience replay and
e-greedy exploration, with ¢ decaying linearly from 1.0 to
0.05 over 5000 episodes. The reward structure was tuned
using a = 0.5, p = 0.3, n = 0.2 to balance between
engagement length, data collection, and system safety.
Performance metrics were recorded for detection accuracy,
engagement time, CPU utilization, and learning
convergence.

B. Evaluation Metrics

To measure framework efficiency, the following quantitative
metrics were used:
a. Detection Accuracy (DA): Percentage of attack
sessions correctly classified as malicious.

_ TP+TN
~ TP+TN+FP+FN

DA x 100 )

b. Average Engagement Time (AET): Measures how
long the attacker remains active before
disconnecting — an indicator of honeypot
effectiveness.

c. False Positive Rate (FPR): Fraction of benign
traffic incorrectly flagged as malicious.
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d. System Resource Utilization (SRU): Average CPU
and memory consumption of the deployed honeypot
modules.

e. Learning Convergence: Evaluated by tracking
cumulative average reward and Q-value stability
across training episodes.

C. Quantitative Results

TABLE NO. Il
QUANTITATIVE PERFORMANCE COMPARISON OF HONEYPOT MODELS

Detection Average Psglzie CPU
Model Accuracy Engagement Utilization
(%) Time (s) Rate (%)
(%)
Static 82.4 48.2 6.7 24
Honeypot
DQN-
based 90.8 63.5 52 28
Honeypot
Proposed
DALHF 96.2 85.4 2.8 31
(DDQN)

Observation: The DDQN-based approach significantly
improved both accuracy and engagement metrics compared
with baseline models, demonstrating the effectiveness of
adaptive reinforcement learning in threat deception.
Although CPU usage increased marginally (~3-4 %), the
trade-off is acceptable for SME-level hardware.

D. Learning Convergence Analysis

Episode Rewards (smoothed)

600

500

Reward

300

200

o 50 100 150 200 250 300 350 400
Episode

Fig.3 Episode-wise reward convergence curve of the DDQN agent showing
progressive learning stability and improved policy optimization across
training episodes

Figure IV shows the episode-wise reward curve of the
DDQN agent. During the initial episodes, exploration
resulted in fluctuating rewards as the agent sampled various
response strategies. After approximately 350-400 episodes,
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the agent stabilized, achieving a steady average cumulative
reward exceeding 600.

This steady upward trend indicates that the agent
successfully learned optimal defense policies — such as
selective interaction maintenance, decoy port deployment,
and adaptive throttling — to maximize both attacker
engagement and system safety.

The Q-value distribution also converged smoothly,
confirming the stability of the DDQN update mechanism
over the standard DQN baseline, which typically exhibits
oscillations due to Q-value overestimation.

E. Qualitative Analysis

a. Adaptivity: The framework dynamically adjusted to
attacker strategies such as port scanning, credential
brute-forcing, and command injection attempts. The
DDQN agent autonomously shifted from “maintain
interaction” to “restrict bandwidth” as attack
intensity rose.

b. Lightweight Operation: Average system load
remained under 35 % CPU and 40 % memory
usage, proving that the containerized structure is
suitable for SMEs with limited hardware.
The CPU utilization across different honeypot
models is illustrated in Fig. 5, showing that the
proposed DDQN-based DALHF achieves high
detection performance with minimal computational
overhead.

CPU Utilization Comparison

Utilization (%)

CPU

DQN Model DALHF
Honeypot Models

Fig. 4 Average CPU utilization comparison among honeypot models. The
DDQN-based DALHF exhibits slightly higher load than static and DQN
honeypots but remains within acceptable limits for SME hardware, confirming
the framework’s lightweight nature.

c. Enhanced Deception Efficiency: The proposed
model prolonged engagement time by over 35%
compared to conventional honeypots, increasing
attacker data capture and improving threat
intelligence quality.

d. Detection Reliability: False alarms decreased by 47
% relative to non-RL honeypots, as the agent
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learned context-sensitive decision boundaries over
time.

F. Comparative Discussion

The DALHF framework outperformed traditional and
DQN-based honeypots due to the use of Double Q-Learning
for action evaluation and target stabilization.
By maintaining two separate networks, the framework
mitigates overestimation errors, achieving faster and more
stable convergence. This allows the honeypot to generalize
across  diverse  attacker  behaviors and  reduce
misclassification.

Compared to recent RL-based intrusion detection
approaches [3], [8], [11], [14], the proposed system
demonstrates comparable accuracy with far lower resource
usage, emphasizing its practical deployment potential for
SME:s [1], [2].

G. Summary of Findings

The experimental results confirm that DALHF:
a. Achieves up to 96 % detection accuracy,
b. Increases average attacker engagement by 35-40
%,
¢. Reduces false positives to below 3 %, and
d. Operates efficiently within SME
constraints.
Hence, the framework provides a balanced solution
combining intelligence, adaptability, and efficiency —
establishing a strong foundation for future work on multi-
agent or federated RL honeypot systems.

hardware

V.CONCLUSION

This research presented the DDQN-Based Adaptive
Lightweight  Honeypot  Framework (DALHF), a
reinforcement  learning—driven  cybersecurity  solution
designed specifically for small and medium-sized enterprises
(SMEs). The proposed framework integrates Double Deep
Q-Learning (DDQN) with a modular honeypot architecture
to provide intelligent, context-aware defense against
evolving cyber threats while maintaining low system
overhead. Through simulation in a controlled SME network
environment, DALHF demonstrated significant
improvements in both detection accuracy and deception
effectiveness, achieving up to 96% detection accuracy,
extending attacker engagement duration by 35-40%, and
maintaining system utilization below 35% CPU and 40%
memory, confirming its suitability for low-resource
networks. The DDQN agent effectively stabilized Q-value
updates and minimized overestimation errors common in
traditional DQN models, resulting in faster learning
convergence and enhanced decision reliability. Qualitative
analysis further showed the system’s adaptivity against
multiple attack vectors such as port scanning, brute-force
authentication, and command injection attempts, while the

20



lightweight containerized design ensured that these
advanced adaptive responses were achieved without
compromising performance or scalability—an essential
feature for SMEs with constrained computational
infrastructure. Overall, DALHF provides a balanced and
practical approach that combines intelligent learning,
operational efficiency, and dynamic threat deception. Future
work will focus on expanding the framework to multi-agent
reinforcement learning environments, integrating automated
log correlation with SIEM platforms, exploring federated or
distributed RL training for enhanced scalability, and
enabling privacy-preserving collaboration.  Additional
improvements  including blockchain-based  secure
collaboration, containerized orchestration models, and
extension to 10T and cloud-native ecosystems will align the
framework with emerging trends in decentralized
cybersecurity. Thus, the proposed DALHF framework
establishes a robust foundation for next-generation
autonomous cyber defense systems—intelligent, scalable,
and transparent—capable of learning and adapting to the
dynamic and evolving threat landscape faced by SMEs.
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