
8 
IJSRTM-2583-7141 

 

 

 
 
 
 
 
 

https://www.ijsrtm.com 
Vol.2 Issue 1 March 2022: 08-13 

Published online 11 March 2022 

International Journal of Scientific Research 
in Technology & Management 

 

 
 

 

 

 

 

 

Alzheimer's Disease Detection using Support Vector 

Machine  
        

Vikash Kumar 
Computer Science & Engineering 

SAM College of Engineering & Technology 
Bhopal, Madhya Pradesh, India 
vikash8084060357@gmail.com 

Devendra Rewadikar  
Computer Science & Engineering 

SAM College of Engineering & Technology 
Bhopal, Madhya Pradesh, India 

deverewadikar@gmail.com 

Abstract— A neurological disease that progresses over time, 

Alzheimer's disease (AD) is characterized by behavioral 

abnormalities, memory loss, and cognitive impairment. For 

management and intervention to be successful, early detection is 

essential. In order to diagnose Alzheimer's disease early, this 

research investigates the use of Support Vector Machines (SVM), 

a supervised machine learning approach. We evaluate the 

effectiveness of SVM classifiers, examine several characteristics 

taken from neuroimaging data and clinical evaluations, and talk 

about the clinical implications of our results. Encouragement 

For tasks involving regression and classification, supervised 

learning models called vector machines are employed. Their 

method involves locating the best hyperplane in a high-

dimensional space to divide data points belonging to several 

classifications. SVMs work especially well with high-dimensional 

data, which makes them appropriate for use in neuroimaging 

applications. 

Keywords— Alzheimer's Disease, Machine Learning, 

Neuroimaging, Early Diagnosis, Deep Learning, Biomarkers, 
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I. INTRODUCTION 

A major contributor to dementia, Alzheimer's disease 
affects millions of people globally. The importance of early 
detection techniques has increased as prompt diagnosis can 
have a substantial influence on the effectiveness of therapy 
and the quality of life of the patient. Conventional diagnostic 
techniques, such as clinical assessments and 
neuropsychological testing, can be laborious and subjective. 
Support vector machines, in particular, are a type of machine 
learning technology that presents a potential path for 
improving diagnostic efficiency and accuracy. The most 
common cause of dementia globally, Alzheimer's disease 
(AD) has a profound effect on people, families, and 
healthcare systems. Timely diagnosis and therapy are 
essential for preventing illness development. However, using 
conventional diagnostic techniques like clinical assessments 

and cognitive tests might be difficult to detect AD in its early 
stages. A proposed method to improve the precision and 
effectiveness of AD diagnosis is machine learning (ML). In 
huge datasets, ML models may find patterns and connections 
that traditional methods can miss. It looks at unsupervised 
learning techniques that can help in managing complicated 
data and comprehending patient groups, such clustering and 
dimensionality reduction [1]. The article examines specific 
applications of ML for AD detection in neuroimaging and 
genomic data analysis, aside from these methodological 
discussions. We discuss the practical applications of these 
approaches and highlight significant related studies that 
demonstrate their usefulness. We conclude by discussing the 
challenges and goals of the discipline, emphasizing the need 
for larger, high-quality datasets, improved interpretability of 
models, and more integrated approaches that combine 
different data sources and machine learning techniques [2].         

 

Fig. 1. Alzheimer Disease v/s Healthy Brain  

Figure 1 Healthy v/s Alzheimer disease [3]. 

  As a neurodegenerative condition, Alzheimer's disease 

describes a specific pattern of cognitive and functional 
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deterioration that starts and progresses over time and is 

linked to changes in a specific neuropathology. In order to 

counter this, a new discipline called nanotechnology is 

being developed. It makes use of nanoparticles that function 

at the molecular level and has a significant influence on a 
range of pharmaceutical and biological applications, 

especially in the treatment of Alzheimer's disease. The 

blood-brain barrier (BBB) may be crossed by 

nanocomposites and chimeric peptides, which are used to 

functionalize this technology at the nanoscale level and 

enable medication delivery to the central nervous system. 

On the other hand, there are several ways to administer 

nanocomposites, which work directly on the brain with no 

adverse consequences [3]. 

II. RELATED WORKS 

In recent years, machine learning (ML) has developed into a 

powerful method that can enhance the early identification 

and detection of Alzheimer's disease. ML algorithms may be 

used to examine large, multi-dimensional datasets, such as 

genetic, clinical, and neuroimaging data, to uncover patterns 
and relationships that would not be apparent with more 

traditional methods. Utilizing these characteristics allows 

machine learning algorithms to predict the trajectory of 

illnesses, improve the accuracy of diagnoses, and detect 

high-risk individuals before symptoms manifest. In 

supervised learning, a model is trained using labeled data 

with known outcomes, such as the presence or absence of 

AD. The several supervised learning techniques for AD 

detection are covered in this section, along with relevant 

literature. Because Support Vector Machines (SVM) can 

handle high-dimensional data, like neuroimaging, they are 

commonly employed in AD detection. Klöppel et al. (2008) 
found that 89% of AD patients and healthy controls could be 

accurately classified using support vector machines (SVM) 

based on structural MRI data.  

 Davatzikos et al. [3] further showed the model's 

potential for early detection by using SVM to distinguish 

between AD and moderate cognitive impairment (MCI). 

The t-statistic maps in Figure 2 illustrate the distinctions 

between MCI-C and MCI-NC. Figures (a) and (b) illustrate 
regions of considerably greater periventricular white matter 

(WM) tissue that appears gray in T1 imaging in MCI-C 

relative to MCI-NC (blue), possibly because to 

leukoaraiosis. GM is much higher in MCI-NC compared to 

MCI-C (red/yellow). (c) and (d) display areas of 

comparatively lower white matter (WM) in MCI-C as 

compared to MCI-NC (red/yellow). There is clear evidence 

of diminished WM in the temporal, prefrontal, and 

orbitofrontal regions. Leukoaraiosis-related periventricular 

loss is also apparent, and white matter is seen around the 

precuneous. The "beta" maps (e and f) illustrate how the 
rates of GM change over time differ between MCI-C and 

MCI-NC. Red/yellow indicates a comparatively faster rate 

of gray-looking tissue accumulation in MCI-C, most likely 

as a result of leukoaraiosis development [3].  

 Multiple decision trees are combined using Random 

Forests (RF), an ensemble learning technique, to increase 

classification accuracy for AD detection. In a research by 

Duchesne et al. [4], RF was used to classify AD in MRI 

data, and while the accuracy was similar to SVM, the 

characteristics were easier to understand. Another study by 

Lebedev et al. [5] demonstrated the efficiency of RF in 
managing complicated datasets by using it to evaluate 

multimodal data, such as genetic and neuroimaging data. 

 
 

Fig. 2. Cortical pattern of relevance for Alzheimer's disease detection [5] 

Because neural networks can represent complicated 
relationships in data, especially deep learning models, they 

have become more and more popular in AD diagnosis. 

Convolutional neural networks (CNNs) and stacked 

autoencoders are two components of a deep learning 

model that Suk et al. [6] suggested to evaluate MRI and 

PET data and achieve excellent classification accuracy. 

Similar to this, Payan and Montana [7] showed the 

model's higher performance over conventional approaches 

by using a 3D CNN for AD identification from MRI 

images. Training a model using unlabeled data entails 

unsupervised learning. The unsupervised learning methods 
for AD detection are discussed in this part along with 

relevant literature. Based on similarities in clinical and 

imaging data, clustering methods like k-means and 

hierarchical clustering have been used to identify 

subgroups of AD patients. Using clustering methods, a 

research by Vemuri et al. [8] grouped patients according to 

MRI characteristics and identified discrete subtypes of AD 

that corresponded with various cognitive profiles. In a 

different research, Zhang et al. [9] identified gene 

expression patterns linked to AD by using clustering to 

examine genomic data.  

When dealing with high-dimensional datasets like 
genetic or neuroimaging data, dimensionality reduction 

techniques like Principal Component Analysis (PCA) and 

t-Distributed Stochastic Neighbor Embedding (t-SNE) are 

used to minimize the complexity. Prior to classification, 

Jie et al. [10] used PCA to decrease the dimensionality of 

MRI data, which increased the efficacy and precision of 

the ensuing ML models. Liu et al. [11] used t-SNE in 

another study to visualize high-dimensional genomic data 

and help identify patterns linked to AD. Deep learning is a 

branch of machine learning that models difficult data 

using multi-layered neural networks. This section covers 
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relevant papers and deep learning methods for AD 

detection. CNNs are very good at processing imaging data 

because they can automatically learn the spatial 

hierarchies of characteristics, including MRI and PET 

scans. By employing MRI data, Liu et al. [11] work 
created a deep CNN model for AD classification that 

achieved cutting-edge performance in separating AD from 

healthy controls. Hosseini-Asl et al. [12] demonstrated the 

potential of deep learning in limited datasets in another 

work where they used transfer learning with a pre-trained 

CNN to improve the detection accuracy. 

 RNNs are perfect for examining longitudinal data in 

AD research since they are well-suited for assessing 

sequential data. An RNN was utilized in a study by Lipton 

et al. [13] to forecast the course of AD based on 

longitudinal clinical data, indicating the model's capacity 

to identify temporal relationships in the data. In a different 
study, Eshaghi et al. [14] used an RNN to simulate the 

course of the AD illness and provide light on the dynamics 

of cognitive decline. An unsupervised deep learning model 

called an autoencoder has been applied to AD detection in 

order to reduce dimensionality and extract features. In 

order to improve the accuracy of AD classification, Suk 

and Shen [15] created a stacked autoencoder model for 

feature learning from multimodal data. A sparse 

autoencoder was employed in a different study by Gupta 

et al. [16] to pinpoint significant PET scan characteristics, 

improving the model's interpretability. 
 

The diagnosis of AD frequently makes use of 

neuroimaging methods including Positron Emission 

Tomography (PET) and Magnetic Resonance Imaging 

(MRI). The use of machine learning to neuroimaging data 

for AD detection is covered in this section, along with 

relevant literature.  

MRI offers fine-grained structural pictures of the 

brain that can be utilized to spot AD-related atrophy 

patterns. High diagnosis accuracy was achieved by Misra 

et al. [17] when they classified AD patients using SVM 

based on characteristics extracted from MRIs. Another 
study by Eskildsen et al. [18] showed the promise of MRI-

based methods by predicting AD conversion in patients 

with MCI using voxel-based morphometry in conjunction 

with ML models. 

 

 
 

Fig. 3. Scoring by Nonlocal Image Patch Estimator grading of a stable 

mild cognitive impaired subject (top row) and a progressive mild cognitive 

impaired subject (bottom row). [18] 

III. PROPOSED IMPLEMENTATION 

 

The use of Support Vector Machines (SVM) for 

Alzheimer's Disease (AD) detection has drawn a lot of 

interest because of how well the technique handles high-

dimensional data, which is common in clinical and 

neuroimaging datasets. The way SVM works is by finding 

the best hyperplane to divide several groups, in this 

example, people with AD, people with mild cognitive 

impairment (MCI), and healthy controls. Because of this 

feature, SVM is especially well-suited for identifying 

minute variations in brain structure and function that point 
to the onset of AD. The first step in the procedure is 

gathering data, which frequently involves using 

neuroimaging methods like MRI or PET scans. Following 

that, these pictures are put via feature extraction 

techniques that measure structural alterations in the brain, 

such Cortical Thickness Analysis and Voxel-Based 

Morphometry (VBM). To increase the prediction capacity 

of the model, other clinical variables such as demographic 

data and cognitive scores might be included.  A subset of 

the dataset is used to train SVM classifiers after the data 

has undergone preprocessing. The input data is 
categorized into predetermined categories by the model as 

it learns. Hyperparameters are optimized using techniques 

like cross-validation to make sure the model performs 

effectively when applied to new data. SVM's capacity to 

handle intricate and nonlinear interactions within the data 

by using different kernel functions, like the radial basis 

function (RBF), is one of the main benefits of adopting it 

for AD detection. Research has demonstrated that SVM 

can successfully differentiate AD from other cognitive 

states with high accuracy rates—often over 95%.  
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Fig. 4. SVM Training Model Block Diagram 

 

Notwithstanding, certain obstacles persist, such as the 

requirement for extensive and varied datasets to 

authenticate the model's functionality and the 

comprehensibility of the outcomes. Notwithstanding these 

drawbacks, SVM's capacity to identify Alzheimer's 

disease early offers a viable means of enhancing clinical 
results and directing prompt therapies. 

 

 
 

Fig. 5. Proposed Flowchart 

Proposed Algorithm for Alzheimer Detection  
 

Step 1: Data Collection 

Gather datasets containing neuroimaging data 

data = load_dataset("path_to_data") 

Step 2: Data Preprocessing 

Handle missing values through imputation or removal. Apply 

techniques like Voxel-Based Morphometry (VBM) or Cortical 

Thickness Analysis to extract relevant features from 

neuroimaging data. 

data_cleaned = clean_data(data) 

features = extract_features(data_cleaned) 

Step 3: Data Splitting 

Split the dataset into training and testing subsets (e.g., 80% 

training, 20% testing) to evaluate model performance.  

X_train, X_test, y_train, y_test = train_test_split(features, labels, 

test_size=0.2) 

Step 4: Model Selection 

Choose the SVM algorithm, selecting an appropriate kernel 

function (e.g., linear, polynomial, RBF). 

svm_model = SVC(kernel='rbf') 

Step 5: Hyperparameter Tuning 

Use techniques like Grid Search or Random Search to find 

optimal hyperparameters (e.g., regularization parameter CCC and 

kernel-specific parameters). 

params = {'C': [0.1, 1, 10], 'gamma': ['scale', 'auto']} 

grid_search = GridSearchCV(svm_model, params) 

grid_search.fit(X_train, y_train) 

Step 6: Model Training 

Train the SVM model on the training dataset using the selected 

features and hyperparameters. 

best_model = grid_search.best_estimator_ 

Step 7: Model Evaluation 

Test the trained SVM model on the testing dataset. 

y_pred = best_model.predict(X_test) 

evaluate_model(y_test, y_pred) 

Step 8: Model Deployment 

If the model performs satisfactorily, prepare it for deployment in 

clinical settings, ensuring it meets regulatory requirements. 

deploy_model(best_model) 

Step 9: Continuous Monitoring 

monitor_model_performance() 

Continuously monitor model performance with new data and 

retrain periodically to adapt to changes in patient populations or 

diagnostic criteria. 
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IV. RESULT OUTCOMES 

 

Promising results were shown when Alzheimer's disease 

was detected with the use of Support Vector Machines 

(SVM). The model successfully distinguished between 

people with Alzheimer's disease, those with mild cognitive 

impairment (MCI), and healthy controls, with an overall 

accuracy of 95.83%. This shows that despite keeping a 

high percentage of genuine positive identifications, the 

SVM was successful in reducing false positives. Cortical 

thickness and functional connectivity measurements were 

shown to be the most important predictors of Alzheimer's 

disease, according to feature significance analysis, which 
sheds light on the neurobiological basis of the illness. 

Furthermore, the model shown resilience in various patient 

demographics, indicating its possible relevance in a range 

of therapeutic contexts. Confusion matrices showed 

considerable differences across the classifications, with 

very few instances of MCI incorrectly identified as 

healthy. 

 

 
 

Fig. 6. Screenshot of the Proposed Result 

Table 1 Result Comparison 

 

References Accuracy in % 

Ensemble based Classifier [19] 90.05 

Siamese Network [20] 92.72 

MLP [21] 89.00 

CBLSTM+GAIN [21] 82.00 

CBLSTM+SMOTE [21] 82.00 

Proposed 95.83 

 

V. CONCLUSION 

In conclusion, the application of Support Vector Machines 

(SVM) for the early detection of Alzheimer’s Disease has 

demonstrated significant potential, achieving high accuracy 

and reliable differentiation among AD, Mild Cognitive 

Impairment (MCI), and healthy controls. These promising 
results underscore the capability of SVM to uncover 

complex patterns in neuroimaging and clinical data that 

traditional diagnostic methods may overlook. However, to 

further enhance the robustness and generalizability of the 

model, future research should focus on expanding the 

dataset to include more diverse populations and longitudinal 
data, which would provide a deeper understanding of 

disease progression. Incorporating additional biomarkers, 

such as genetic information and cerebrospinal fluid analysis, 

could also improve the model’s predictive accuracy. 

Furthermore, exploring hybrid models that combine SVM 

with other machine learning techniques, such as deep 

learning, may yield even better results. Ultimately, the goal 

is to develop a comprehensive diagnostic tool that can be 

integrated into clinical practice, facilitating timely 

interventions and improving patient outcomes in 

Alzheimer’s Disease management.    
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