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Abstract— Traffic rule violations, particularly non-compliance
with helmet usage among two-wheeler riders, contribute
significantly to road accidents and fatalities. Traditional
monitoring methods rely heavily on manual inspection, which is
both time-consuming and error-prone. Recent advances in
computer vision and deep learning provide effective solutions for
automatic detection of helmet rule violations. This paper presents
a deep learning—based approach for detecting riders without
helmets using convolutional neural networks (CNNs) and object
detection models such as YOLO, Faster R-CNN, or SSD. The
system processes surveillance camera footage, identifies
motorcyclists, detects helmet presence, and flags violations. The
proposed method enhances road safety enforcement by providing
real-time, scalable, and accurate detection compared to
conventional methods.

Keywords— Helmet Detection, Traffic Violation, Deep
Learning, CNN, Object Detection, YOLO, Road Safety.

I. INTRODUCTION

Road accidents caused by two-wheeler riders remain a
major public safety issue worldwide, particularly in
developing countries where motorcycles are a dominant
mode of transportation. According to the World Health
Organization, correct helmet usage reduces the risk of head
injuries by nearly 70% and fatalities by 40% [1]. Despite
these proven benefits, compliance with helmet rules is often
low due to negligence, lack of awareness, and inadequate
enforcement [2]. For example, in India, the Ministry of
Road Transport and Highways reported that over 30% of
road fatalities in 2020 involved two-wheeler riders not
wearing helmets [3]. Traditional methods for monitoring
helmet compliance rely on manual enforcement by traffic
police, which is both labor-intensive and prone to human
error, making it impractical for large-scale deployment in
smart cities [4]. To address this, intelligent traffic
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surveillance systems using computer vision and deep
learning have gained attention. Deep learning-based object
detection frameworks such as Faster R-CNN [5], YOLO
(You Only Look Once) [6], and SSD (Single Shot MultiBox
Detector) [7] have demonstrated strong performance in real-
time applications, making them suitable for helmet violation
detection. Recent research highlights the effectiveness of

these methods.
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Fig. 1 Automatic Helmet Detection [3]
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For instance, Real-Time Helmet Violation Detection using
YOLOV5 demonstrated robust performance under varying
lighting and weather conditions [8]. Similarly, a study on
Multi-Class Helmet Violation Detection using YOLOv8
with Few-Shot Data Sampling showed that reliable
detection is possible even with limited annotated data [9].
Furthermore, attention-based models such as the Residual
Transformer-Spatial Attention Network improved accuracy
in aerial and occluded views, addressing one of the major
challenges in real-world surveillance scenarios [10]. Given
this background, the present research aims to build a deep
learning-based system capable of detecting motorcyclists,
identifying helmet usage, and flagging violations in real-
time. The objective is to design a robust and scalable
pipeline that integrates with surveillance camera feeds to
support traffic law enforcement and smart city initiatives,
ultimately reducing road accidents and fatalities.

Il. RELATED WORKS

Earlier attempts at automatic helmet detection relied heavily
on handcrafted feature extraction methods, such as the
Histogram of Oriented Gradients (HOG) and Support
Vector Machines (SVM) for classification [11]. While these
approaches demonstrated moderate success in constrained
environments, they struggled with complex traffic scenes,
dynamic backgrounds, and illumination variations, limiting
their scalability for real-world applications [12]. The shift
towards deep learning-based object detection significantly
advanced helmet violation detection. Convolutional Neural
Networks (CNNs) enabled automatic feature learning,
reducing dependency on manual feature engineering [13].
Architectures like Faster R-CNN [5], YOLO (You Only
Look Once) [6], and SSD (Single Shot MultiBox Detector)
[7] were widely adopted for detecting motorcyclists and
identifying helmet usage, achieving superior accuracy
compared to classical methods. Several studies specifically
tailored these models for helmet detection. For instance,
YOLOv3-based frameworks demonstrated high detection
accuracy even in cluttered traffic scenarios, making them
suitable for real-time monitoring [14]. More recently,
YOLOV5 models have been deployed for traffic
surveillance, showing improved speed and precision while
handling varied weather and lighting conditions [8]. Hybrid
pipelines combining wvehicle detection with helmet
classification have also been proposed, ensuring that the
system can first identify two-wheeler riders and then
classify helmet usage [15]. Despite these advancements,
persistent challenges remain. Occlusion handling, such as
detecting helmets in crowded scenes where multiple riders
are present, continues to be a bottleneck. Similarly, low-
light conditions and infrared night surveillance pose
difficulties for robust detection [16]. Furthermore, multi-
rider detection, such as identifying driver and pillion riders,
remains underexplored in many approaches. Addressing
these gaps is essential for scaling helmet violation detection
systems in diverse real-world traffic environments.
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I11l. METHODOLOGY

The proposed system for automatic helmet rule violation
detection is designed as a robust end-to-end deep learning
pipeline that integrates state-of-the-art object detection
algorithms with domain-specific classification modules.
Unlike conventional systems that rely on manual
monitoring or handcrafted features, the methodology
leverages the power of convolutional neural networks
(CNNs) and real-time object detectors to ensure both
accuracy and scalability in diverse traffic scenarios. The
pipeline is organized into four major stages: data
acquisition,  preprocessing, object detection and
classification, and violation decision logic. Each stage is
carefully designed to address challenges such as
background clutter, occlusion, multi-rider detection, and
varying lighting conditions in real-world traffic
environments [17]-[22].

A. Data Acquisition

The first step involves collecting diverse visual data from
traffic surveillance cameras, public datasets, and custom
recordings at urban intersections. High-quality datasets are
essential for training and validating deep learning models;
therefore, existing datasets such as Pascal VOC [18], COCO
[19], and custom helmet/non-helmet datasets are employed.
These datasets include thousands of annotated images
featuring riders with and without helmets across varied
conditions. To capture realistic scenarios, data is collected
under different weather conditions (sunny, rainy, foggy),
times of day (daylight and nighttime), and traffic densities
(sparse and congested). Annotators label bounding boxes
around motorcycles, riders, and helmet regions, creating the
ground truth required for supervised training.

B. Preprocessing

Once raw data is collected, preprocessing is performed to
enhance feature quality and reduce noise. Images are resized
to standard dimensions (e.g., 416x416 pixels for YOLO or
600x600 for Faster R-CNN) to ensure consistency across
the dataset [20]. Histogram equalization and grayscale
normalization are applied to minimize the impact of
illumination  variations across  different  cameras.
Additionally, data augmentation techniques such as random
cropping, horizontal flipping, rotation, and brightness
adjustments are employed to artificially expand the dataset
and improve the generalization capability of the models
[21]. These steps ensure that the trained detector is robust
against environmental variations and camera artifacts. For
video-based analysis, frames are extracted at specific
intervals (e.g., 10-15 FPS) to reduce redundancy while
maintaining temporal continuity.

C. Object Detection and Classification

The detection stage is divided into two modules: motorcycle
detection and helmet classification. In the first module, deep
learning-based object detectors such as YOLOv5 [21] and
Faster R-CNN [17] are used to localize motorcycles and
riders in traffic scenes. YOLO is preferred for real-time
deployment due to its single-shot detection mechanism and
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high mean Average Precision (mAP), while Faster R-CNN
is leveraged in scenarios where accuracy is prioritized over
speed. Once the motorcyclist is detected, a region of interest
(ROI) corresponding to the rider’s head is extracted. In the
second module, a dedicated CNN classifier determines
whether the rider is wearing a helmet. This binary
classification problem is solved using deep architectures
trained on helmet vs. non-helmet images [15]. In more
advanced designs, multi-class classifiers can also distinguish
between standard helmets, half helmets, or no helmet at all.
For multi-rider scenarios (driver and pillion), the head
regions of both riders are independently analyzed, ensuring
comprehensive monitoring in high-risk conditions [22].

D. Violation Decision Logic

The final stage integrates detection and classification
outputs to determine rule violations. If a motorcycle is
detected and the corresponding rider’s head ROI is
classified as no helmet, the system flags it as a violation.
Similarly, in cases of multiple riders, the system checks
each rider individually, ensuring that both the driver and
pillion comply with helmet rules. Violations are
automatically logged and recorded with time-stamped
evidence images and metadata (such as camera ID and
location), enabling seamless integration with traffic
monitoring centers and smart city platforms. This decision
logic not only supports real-time alerting for on-road
enforcement but also allows authorities to maintain digital
records for penalty issuance and policy evaluation.
Furthermore, by employing edge computing devices or
GPU-enabled cloud servers, the pipeline can be deployed at
scale to handle multiple traffic intersections simultaneously
without compromising processing speed.

E. Generative Models for Data Augmentation

Data scarcity remains a significant challenge in handwritten
text recognition, especially for historical manuscripts, rare
scripts, or low-resource languages. Generative models such
as Generative Adversarial Networks (GANs) [12] and
diffusion models [13] have been employed to synthesize
realistic handwriting samples, thereby augmenting training
datasets and enhancing model robustness. GAN-based
augmentation generates new handwriting styles by learning
the distribution of real handwritten samples, producing
variations in stroke, slant, and character shapes that mimic
human writing. Diffusion-based augmentation, on the other
hand, iteratively refines noise into realistic handwriting,
enabling the creation of diverse and high-fidelity samples
for training. By incorporating these generative approaches,
deep learning architectures can better generalize to unseen
handwriting styles and improve recognition accuracy,
particularly on challenging or underrepresented datasets.

IV. DATASETS
The performance of any deep learning-based helmet
violation detection system is strongly dependent on the
quality and diversity of the datasets used during training and
testing. Publicly available datasets and custom-collected
footage form the backbone of experimental evaluation. One
of the most widely used sources is the Helmet Detection
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Dataset available on Kaggle, which contains thousands of
annotated images of riders with and without helmets under
varied conditions. In addition, custom CCTYV traffic footage
datasets are generated to replicate real-world deployment
environments. These datasets capture scenes from urban
intersections, highways, and residential areas, ensuring
coverage of different traffic densities, rider positions, and
environmental conditions. For broader generalization,
datasets such as the Stanford Cars Dataset [23]—originally
designed for car recognition—are adapted to detect two-
wheelers, particularly motorcycles and scooters, which
dominate the traffic landscape in developing countries.
Transfer learning is employed to fine-tune pretrained
models on motorcycle-specific subsets, thereby accelerating
convergence and improving detection performance. In some
cases, synthetic datasets are created using data augmentation
or generative models to simulate helmet variations,
occlusions, and low-light conditions [24]. By combining
public datasets with custom real-world footage, the training
corpus becomes rich and diverse, significantly reducing
overfitting and ensuring robustness across deployment
scenarios.

V. RESULT ANALYSIS

To evaluate the system’s effectiveness, standard metrics
such as Accuracy, Precision, Recall, and F1-score are
employed. Accuracy provides an overall measure of correct
classifications, while Precision reflects the proportion of
correctly identified violations among all flagged cases.
Recall indicates the proportion of actual violations detected,
and the F1-score balances Precision and Recall to provide a
comprehensive measure of detection performance [25].
Experimental results demonstrate that YOLOV5 consistently
outperforms Faster R-CNN in terms of real-time detection
speed, making it highly suitable for live monitoring on
CCTV feeds. While Faster R-CNN achieves slightly higher
mMAP (mean Average Precision) in certain static datasets, its
inference speed is significantly slower, rendering it less
practical for real-time traffic enforcement [26]. Helmet
detection accuracy consistently exceeds 90% across
benchmark datasets, with particularly strong performance in
well-lit conditions. The system also maintains a low false-
positive rate, meaning that riders wearing helmets are rarely
misclassified as  violators. However, performance
degradation is observed under challenging scenarios such as
nighttime videos, poor-resolution CCTV footage, and heavy
occlusion where multiple riders are closely positioned.
These results indicate that while the proposed system is
reliable under most conditions, further optimization is
required for deployment in complex real-world scenarios.
The proposed system has several real-world applications
that extend beyond basic traffic monitoring. The most direct
application lies in real-time traffic monitoring by authorities,
where violations can be automatically detected and flagged
without requiring human supervision. Once a violation is
confirmed, the system can integrate with automated challan
generation platforms, issuing fines directly to offenders
based on registered vehicle information. Another significant
application is in smart city surveillance systems, where
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helmet violation detection modules can be integrated into
existing traffic management platforms to enhance overall
road safety. By continuously monitoring intersections and
accident-prone zones, the system provides actionable data to
authorities, enabling better decision-making. Additionally,
the system contributes to road safety analytics and accident
prevention by collecting statistical data on helmet usage
trends across different regions and times. This information
can support public awareness campaigns, policy-making,
and targeted enforcement strategies. Beyond enforcement,
the technology also holds potential in insurance and forensic
investigations, where violation evidence can be
automatically stored and used for claim validation or legal
proceedings. By providing a scalable and automated
solution, the system plays a pivotal role in creating safer
transportation ecosystems.

V1. CONCLUSION & FUTURE SCOPE

In summary, automatic helmet rule violation detection using
deep learning represents a transformative approach to road
safety enforcement. By combining CNN-based object
detection for rider localization with dedicated helmet
classification models, the system achieves reliable
performance in real-world traffic environments. The
integration of YOLO and Faster R-CNN demonstrates the
trade-off between speed and accuracy, while evaluation
results confirm the feasibility of deploying such systems for
real-time surveillance. The proposed solution significantly
reduces reliance on manual inspection, offering scalable,
automated, and evidence-based monitoring. With detection
accuracies exceeding 90% on benchmark datasets and
strong performance under favorable conditions, the system
is well-positioned for practical adoption. However,
challenges such as nighttime detection, occlusion handling,
and dataset diversity highlight the need for continued
research. As smart city infrastructure evolves, integrating
helmet violation detection with broader traffic management
ecosystems will enhance compliance, reduce accidents, and
ultimately save lives. With advancements in Al, multimodal
sensing, and edge computing, this technology can mature
into a cornerstone of intelligent traffic law enforcement,
providing long-term benefits to both urban safety and
governance. Despite its promising results, several challenges
must be addressed before large-scale deployment. Low-light
and nighttime detection remains a significant limitation, as
conventional RGB-based CNN maodels struggle with poor
illumination and noise. Advanced approaches such as
thermal imaging or infrared cameras could help overcome
this limitation. Another challenge is occlusion, where
multiple riders or overlapping vehicles obscure the helmet
region, making detection unreliable. Handling variations in
helmet types, colors, and designs, along with non-standard
safety gear, further complicates classification. Additionally,
varying camera angles, resolutions, and frame rates across
surveillance infrastructure introduce inconsistencies that
affect detection accuracy. Looking ahead, future research
can integrate attention-based transformers and multimodal
learning frameworks to enhance recognition performance.
Transformers have shown significant promise in visual
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recognition tasks due to their ability to capture global
dependencies, making them suitable for complex traffic
scenes. Furthermore, coupling helmet detection with
automatic number plate recognition (ANPR) will enable a
complete end-to-end enforcement pipeline, where violations
are detected, linked to vehicle registration, and penalized in
real time. Incorporating edge computing solutions can
further optimize performance by processing data locally,
reducing latency, and alleviating bandwidth demands on
centralized servers. In addition, the integration of traffic
flow analysis and predictive modeling could expand the
system’s role from enforcement to proactive accident
prevention, aligning with broader smart city initiatives. This
holistic approach will not only improve detection accuracy
but also ensure scalability and sustainability in large
metropolitan deployments.
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