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Abstract— Traffic rule violations, particularly non-compliance 

with helmet usage among two-wheeler riders, contribute 

significantly to road accidents and fatalities. Traditional 

monitoring methods rely heavily on manual inspection, which is 

both time-consuming and error-prone. Recent advances in 

computer vision and deep learning provide effective solutions for 

automatic detection of helmet rule violations. This paper presents 

a deep learning–based approach for detecting riders without 

helmets using convolutional neural networks (CNNs) and object 

detection models such as YOLO, Faster R-CNN, or SSD. The 

system processes surveillance camera footage, identifies 

motorcyclists, detects helmet presence, and flags violations. The 

proposed method enhances road safety enforcement by providing 

real-time, scalable, and accurate detection compared to 

conventional methods.   

 

Keywords— Helmet Detection, Traffic Violation, Deep 

Learning, CNN, Object Detection, YOLO, Road Safety. 

I. INTRODUCTION 

Road accidents caused by two-wheeler riders remain a 

major public safety issue worldwide, particularly in 

developing countries where motorcycles are a dominant 

mode of transportation. According to the World Health 

Organization, correct helmet usage reduces the risk of head 

injuries by nearly 70% and fatalities by 40% [1]. Despite 

these proven benefits, compliance with helmet rules is often 

low due to negligence, lack of awareness, and inadequate 
enforcement [2]. For example, in India, the Ministry of 

Road Transport and Highways reported that over 30% of 

road fatalities in 2020 involved two-wheeler riders not 

wearing helmets [3]. Traditional methods for monitoring 

helmet compliance rely on manual enforcement by traffic 

police, which is both labor-intensive and prone to human 

error, making it impractical for large-scale deployment in 

smart cities [4]. To address this, intelligent traffic 

surveillance systems using computer vision and deep 

learning have gained attention. Deep learning-based object 

detection frameworks such as Faster R-CNN [5], YOLO 

(You Only Look Once) [6], and SSD (Single Shot MultiBox 

Detector) [7] have demonstrated strong performance in real-

time applications, making them suitable for helmet violation 

detection. Recent research highlights the effectiveness of 

these methods.  

 
 

Fig. 1 Automatic Helmet Detection [3] 
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For instance, Real-Time Helmet Violation Detection using 

YOLOv5 demonstrated robust performance under varying 

lighting and weather conditions [8]. Similarly, a study on 

Multi-Class Helmet Violation Detection using YOLOv8 
with Few-Shot Data Sampling showed that reliable 

detection is possible even with limited annotated data [9]. 

Furthermore, attention-based models such as the Residual 

Transformer-Spatial Attention Network improved accuracy 

in aerial and occluded views, addressing one of the major 

challenges in real-world surveillance scenarios [10]. Given 

this background, the present research aims to build a deep 

learning-based system capable of detecting motorcyclists, 

identifying helmet usage, and flagging violations in real-

time. The objective is to design a robust and scalable 

pipeline that integrates with surveillance camera feeds to 

support traffic law enforcement and smart city initiatives, 
ultimately reducing road accidents and fatalities.  

II. RELATED WORKS 

Earlier attempts at automatic helmet detection relied heavily 

on handcrafted feature extraction methods, such as the 

Histogram of Oriented Gradients (HOG) and Support 

Vector Machines (SVM) for classification [11]. While these 

approaches demonstrated moderate success in constrained 

environments, they struggled with complex traffic scenes, 

dynamic backgrounds, and illumination variations, limiting 

their scalability for real-world applications [12]. The shift 

towards deep learning-based object detection significantly 
advanced helmet violation detection. Convolutional Neural 

Networks (CNNs) enabled automatic feature learning, 

reducing dependency on manual feature engineering [13]. 

Architectures like Faster R-CNN [5], YOLO (You Only 

Look Once) [6], and SSD (Single Shot MultiBox Detector) 

[7] were widely adopted for detecting motorcyclists and 

identifying helmet usage, achieving superior accuracy 

compared to classical methods. Several studies specifically 

tailored these models for helmet detection. For instance, 

YOLOv3-based frameworks demonstrated high detection 

accuracy even in cluttered traffic scenarios, making them 

suitable for real-time monitoring [14]. More recently, 
YOLOv5 models have been deployed for traffic 

surveillance, showing improved speed and precision while 

handling varied weather and lighting conditions [8]. Hybrid 

pipelines combining vehicle detection with helmet 

classification have also been proposed, ensuring that the 

system can first identify two-wheeler riders and then 

classify helmet usage [15]. Despite these advancements, 

persistent challenges remain. Occlusion handling, such as 

detecting helmets in crowded scenes where multiple riders 

are present, continues to be a bottleneck. Similarly, low-

light conditions and infrared night surveillance pose 
difficulties for robust detection [16]. Furthermore, multi-

rider detection, such as identifying driver and pillion riders, 

remains underexplored in many approaches. Addressing 

these gaps is essential for scaling helmet violation detection 

systems in diverse real-world traffic environments.  

III. METHODOLOGY 

The proposed system for automatic helmet rule violation 

detection is designed as a robust end-to-end deep learning 

pipeline that integrates state-of-the-art object detection 

algorithms with domain-specific classification modules. 
Unlike conventional systems that rely on manual 

monitoring or handcrafted features, the methodology 

leverages the power of convolutional neural networks 

(CNNs) and real-time object detectors to ensure both 

accuracy and scalability in diverse traffic scenarios. The 

pipeline is organized into four major stages: data 

acquisition, preprocessing, object detection and 

classification, and violation decision logic. Each stage is 

carefully designed to address challenges such as 

background clutter, occlusion, multi-rider detection, and 

varying lighting conditions in real-world traffic 
environments [17]–[22]. 

A. Data Acquisition 

The first step involves collecting diverse visual data from 

traffic surveillance cameras, public datasets, and custom 

recordings at urban intersections. High-quality datasets are 

essential for training and validating deep learning models; 

therefore, existing datasets such as Pascal VOC [18], COCO 

[19], and custom helmet/non-helmet datasets are employed. 

These datasets include thousands of annotated images 

featuring riders with and without helmets across varied 

conditions. To capture realistic scenarios, data is collected 

under different weather conditions (sunny, rainy, foggy), 
times of day (daylight and nighttime), and traffic densities 

(sparse and congested). Annotators label bounding boxes 

around motorcycles, riders, and helmet regions, creating the 
ground truth required for supervised training.  

B. Preprocessing 

Once raw data is collected, preprocessing is performed to 
enhance feature quality and reduce noise. Images are resized 

to standard dimensions (e.g., 416×416 pixels for YOLO or 

600×600 for Faster R-CNN) to ensure consistency across 

the dataset [20]. Histogram equalization and grayscale 

normalization are applied to minimize the impact of 

illumination variations across different cameras. 

Additionally, data augmentation techniques such as random 

cropping, horizontal flipping, rotation, and brightness 

adjustments are employed to artificially expand the dataset 

and improve the generalization capability of the models 

[21]. These steps ensure that the trained detector is robust 
against environmental variations and camera artifacts. For 

video-based analysis, frames are extracted at specific 

intervals (e.g., 10–15 FPS) to reduce redundancy while 

maintaining temporal continuity.  

C. Object Detection and Classification 

The detection stage is divided into two modules: motorcycle 
detection and helmet classification. In the first module, deep 

learning-based object detectors such as YOLOv5 [21] and 

Faster R-CNN [17] are used to localize motorcycles and 

riders in traffic scenes. YOLO is preferred for real-time 

deployment due to its single-shot detection mechanism and 
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high mean Average Precision (mAP), while Faster R-CNN 

is leveraged in scenarios where accuracy is prioritized over 

speed. Once the motorcyclist is detected, a region of interest 

(ROI) corresponding to the rider’s head is extracted. In the 

second module, a dedicated CNN classifier determines 
whether the rider is wearing a helmet. This binary 

classification problem is solved using deep architectures 

trained on helmet vs. non-helmet images [15]. In more 

advanced designs, multi-class classifiers can also distinguish 

between standard helmets, half helmets, or no helmet at all. 

For multi-rider scenarios (driver and pillion), the head 

regions of both riders are independently analyzed, ensuring 

comprehensive monitoring in high-risk conditions [22].  

D. Violation Decision Logic 

The final stage integrates detection and classification 

outputs to determine rule violations. If a motorcycle is 

detected and the corresponding rider’s head ROI is 

classified as no helmet, the system flags it as a violation. 

Similarly, in cases of multiple riders, the system checks 

each rider individually, ensuring that both the driver and 

pillion comply with helmet rules. Violations are 

automatically logged and recorded with time-stamped 
evidence images and metadata (such as camera ID and 

location), enabling seamless integration with traffic 

monitoring centers and smart city platforms. This decision 

logic not only supports real-time alerting for on-road 

enforcement but also allows authorities to maintain digital 

records for penalty issuance and policy evaluation. 

Furthermore, by employing edge computing devices or 

GPU-enabled cloud servers, the pipeline can be deployed at 

scale to handle multiple traffic intersections simultaneously 

without compromising processing speed. 

E. Generative Models for Data Augmentation 

Data scarcity remains a significant challenge in handwritten 

text recognition, especially for historical manuscripts, rare 

scripts, or low-resource languages. Generative models such 

as Generative Adversarial Networks (GANs) [12] and 

diffusion models [13] have been employed to synthesize 

realistic handwriting samples, thereby augmenting training 

datasets and enhancing model robustness. GAN-based 
augmentation generates new handwriting styles by learning 

the distribution of real handwritten samples, producing 

variations in stroke, slant, and character shapes that mimic 

human writing. Diffusion-based augmentation, on the other 

hand, iteratively refines noise into realistic handwriting, 

enabling the creation of diverse and high-fidelity samples 

for training. By incorporating these generative approaches, 

deep learning architectures can better generalize to unseen 

handwriting styles and improve recognition accuracy, 

particularly on challenging or underrepresented datasets. 

 
IV. DATASETS 

The performance of any deep learning-based helmet 

violation detection system is strongly dependent on the 

quality and diversity of the datasets used during training and 

testing. Publicly available datasets and custom-collected 

footage form the backbone of experimental evaluation. One 

of the most widely used sources is the Helmet Detection 

Dataset available on Kaggle, which contains thousands of 

annotated images of riders with and without helmets under 

varied conditions. In addition, custom CCTV traffic footage 

datasets are generated to replicate real-world deployment 

environments. These datasets capture scenes from urban 
intersections, highways, and residential areas, ensuring 

coverage of different traffic densities, rider positions, and 

environmental conditions. For broader generalization, 

datasets such as the Stanford Cars Dataset [23]—originally 

designed for car recognition—are adapted to detect two-

wheelers, particularly motorcycles and scooters, which 

dominate the traffic landscape in developing countries. 

Transfer learning is employed to fine-tune pretrained 

models on motorcycle-specific subsets, thereby accelerating 

convergence and improving detection performance. In some 

cases, synthetic datasets are created using data augmentation 

or generative models to simulate helmet variations, 
occlusions, and low-light conditions [24]. By combining 

public datasets with custom real-world footage, the training 

corpus becomes rich and diverse, significantly reducing 

overfitting and ensuring robustness across deployment 

scenarios. 

 

V. RESULT ANALYSIS 

 

To evaluate the system’s effectiveness, standard metrics 

such as Accuracy, Precision, Recall, and F1-score are 

employed. Accuracy provides an overall measure of correct 
classifications, while Precision reflects the proportion of 

correctly identified violations among all flagged cases. 

Recall indicates the proportion of actual violations detected, 

and the F1-score balances Precision and Recall to provide a 

comprehensive measure of detection performance [25]. 

Experimental results demonstrate that YOLOv5 consistently 

outperforms Faster R-CNN in terms of real-time detection 

speed, making it highly suitable for live monitoring on 

CCTV feeds. While Faster R-CNN achieves slightly higher 

mAP (mean Average Precision) in certain static datasets, its 

inference speed is significantly slower, rendering it less 

practical for real-time traffic enforcement [26]. Helmet 
detection accuracy consistently exceeds 90% across 

benchmark datasets, with particularly strong performance in 

well-lit conditions. The system also maintains a low false-

positive rate, meaning that riders wearing helmets are rarely 

misclassified as violators. However, performance 

degradation is observed under challenging scenarios such as 

nighttime videos, poor-resolution CCTV footage, and heavy 

occlusion where multiple riders are closely positioned. 

These results indicate that while the proposed system is 

reliable under most conditions, further optimization is 

required for deployment in complex real-world scenarios. 
The proposed system has several real-world applications 

that extend beyond basic traffic monitoring. The most direct 

application lies in real-time traffic monitoring by authorities, 

where violations can be automatically detected and flagged 

without requiring human supervision. Once a violation is 

confirmed, the system can integrate with automated challan 

generation platforms, issuing fines directly to offenders 

based on registered vehicle information. Another significant 

application is in smart city surveillance systems, where 
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helmet violation detection modules can be integrated into 

existing traffic management platforms to enhance overall 

road safety. By continuously monitoring intersections and 

accident-prone zones, the system provides actionable data to 

authorities, enabling better decision-making. Additionally, 
the system contributes to road safety analytics and accident 

prevention by collecting statistical data on helmet usage 

trends across different regions and times. This information 

can support public awareness campaigns, policy-making, 

and targeted enforcement strategies. Beyond enforcement, 

the technology also holds potential in insurance and forensic 

investigations, where violation evidence can be 

automatically stored and used for claim validation or legal 

proceedings. By providing a scalable and automated 

solution, the system plays a pivotal role in creating safer 

transportation ecosystems. 

VI. CONCLUSION & FUTURE SCOPE 

In summary, automatic helmet rule violation detection using 

deep learning represents a transformative approach to road 

safety enforcement. By combining CNN-based object 

detection for rider localization with dedicated helmet 

classification models, the system achieves reliable 

performance in real-world traffic environments. The 

integration of YOLO and Faster R-CNN demonstrates the 

trade-off between speed and accuracy, while evaluation 

results confirm the feasibility of deploying such systems for 

real-time surveillance. The proposed solution significantly 

reduces reliance on manual inspection, offering scalable, 
automated, and evidence-based monitoring. With detection 

accuracies exceeding 90% on benchmark datasets and 

strong performance under favorable conditions, the system 

is well-positioned for practical adoption. However, 

challenges such as nighttime detection, occlusion handling, 

and dataset diversity highlight the need for continued 

research. As smart city infrastructure evolves, integrating 

helmet violation detection with broader traffic management 

ecosystems will enhance compliance, reduce accidents, and 

ultimately save lives. With advancements in AI, multimodal 

sensing, and edge computing, this technology can mature 

into a cornerstone of intelligent traffic law enforcement, 
providing long-term benefits to both urban safety and 

governance. Despite its promising results, several challenges 

must be addressed before large-scale deployment. Low-light 

and nighttime detection remains a significant limitation, as 

conventional RGB-based CNN models struggle with poor 

illumination and noise. Advanced approaches such as 

thermal imaging or infrared cameras could help overcome 

this limitation. Another challenge is occlusion, where 

multiple riders or overlapping vehicles obscure the helmet 

region, making detection unreliable. Handling variations in 

helmet types, colors, and designs, along with non-standard 
safety gear, further complicates classification. Additionally, 

varying camera angles, resolutions, and frame rates across 

surveillance infrastructure introduce inconsistencies that 

affect detection accuracy. Looking ahead, future research 

can integrate attention-based transformers and multimodal 

learning frameworks to enhance recognition performance. 

Transformers have shown significant promise in visual 

recognition tasks due to their ability to capture global 

dependencies, making them suitable for complex traffic 

scenes. Furthermore, coupling helmet detection with 

automatic number plate recognition (ANPR) will enable a 

complete end-to-end enforcement pipeline, where violations 
are detected, linked to vehicle registration, and penalized in 

real time. Incorporating edge computing solutions can 

further optimize performance by processing data locally, 

reducing latency, and alleviating bandwidth demands on 

centralized servers. In addition, the integration of traffic 

flow analysis and predictive modeling could expand the 

system’s role from enforcement to proactive accident 

prevention, aligning with broader smart city initiatives. This 

holistic approach will not only improve detection accuracy 

but also ensure scalability and sustainability in large 

metropolitan deployments.   
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