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Abstract— The proliferation of generative models such as 

Generative Adversarial Networks (GANs), Variational 

Autoencoders (VAEs), and diffusion-based models has enabled 

the creation of highly realistic synthetic images, raising concerns 

in digital trust, cybersecurity, and misinformation. Automatic 

detection of AI-generated images has therefore become a critical 

research problem. Traditional forensic approaches relying on 

handcrafted features are insufficient to capture subtle artifacts 

introduced by modern generators. In this paper, we survey and 

propose machine learning-based frameworks for detecting AI-

generated images, emphasizing convolutional neural networks 

(CNNs), frequency-domain analysis, and transformer-based 

architectures. The study includes a comprehensive discussion of 

benchmark datasets, preprocessing techniques, feature extraction 

strategies, and evaluation metrics. Experimental results 

demonstrate that hybrid architectures combining spatial and 

frequency-domain features with attention mechanisms provide 

robust performance across diverse generative models. Finally, we 

discuss current challenges, limitations, and future directions, 

including generalization to unseen generative models, 

adversarial robustness, and ethical considerations for 

deployment.   
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I. INTRODUCTION 

The rapid advancement of generative models, including 
Generative Adversarial Networks (GANs) [1], Variational 

Autoencoders (VAEs) [2], and diffusion models [3], has 

revolutionized the creation of synthetic images with high 

visual fidelity. These models can generate photorealistic 

human faces, landscapes, artwork, and other content that is 

often indistinguishable from authentic photographs. While 

this capability has driven innovation in entertainment, 

design, and scientific visualization, it has also created 

significant societal and technical challenges. In particular, 

the proliferation of AI-generated images has led to concerns 

over misinformation, manipulation in media, copyright 

violations, and potential threats to digital trust [4]. Fake 

images can propagate through social media, news outlets, 

and messaging platforms, making it increasingly difficult for 

users to discern authentic content. Detecting AI-generated 

images has thus emerged as a critical task at the intersection 

of computer vision, machine learning, and cybersecurity. 
Traditional image forensic techniques, including noise 

analysis, sensor pattern detection, and metadata inspection 

[5], are increasingly insufficient for modern generative 

models, which produce outputs with minimal perceptible 

artifacts. Deep learning approaches, in contrast, are capable 

of learning complex hierarchical features from data, 

enabling the detection of subtle inconsistencies in spatial 

patterns, frequency domains, and semantic coherence. These 

methods leverage convolutional neural networks (CNNs) to 

capture local texture anomalies, transformer-based 

architectures to model long-range dependencies and global 
relationships, and frequency-domain analyses to detect 

synthetic noise patterns imperceptible to the human eye. The 

rise of large-scale AI image generation, such as StyleGAN 

[6], BigGAN [7], and Stable Diffusion [8], further 

underscores the urgency of developing robust detection 

frameworks. State-of-the-art models can create images that 

fool both humans and classical classifiers, necessitating 

hybrid detection strategies that combine multiple feature 

extraction techniques, attention mechanisms, and adversarial 

training for generalization. Furthermore, the availability of 

standardized datasets such as FaceForensics++ [9], DFDC 

[10], and GAN-generated corpora has enabled 
benchmarking and evaluation of detection algorithms under 

controlled and real-world conditions. In this work, we 

investigate machine learning frameworks for the detection 
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of AI-generated images, emphasizing the role of CNNs, 

transformer architectures, and frequency-domain analysis. 

We discuss preprocessing strategies, feature extraction 

methods, evaluation metrics, and dataset considerations, 

aiming to provide a comprehensive overview of the current 
state-of-the-art. Additionally, we address challenges such as 

generalization to unseen generative models, robustness 

against post-processing, and adversarial attacks, 

highlighting potential future research directions. By 

providing a structured analysis, this paper seeks to support 

researchers, practitioners, and policymakers in developing 

reliable systems for AI-generated image detection, 

ultimately contributing to digital content integrity and 

security.  

 
 

Fig. 1 AI Generated Image v/s Real Image [2] 
 

For instance, Real-Time Helmet Violation Detection using 

YOLOv5 demonstrated robust performance under varying 

lighting and weather conditions [8]. Similarly, a study on 

Multi-Class Helmet Violation Detection using YOLOv8 
with Few-Shot Data Sampling showed that reliable 

detection is possible even with limited annotated data [9]. 

Furthermore, attention-based models such as the Residual 

Transformer-Spatial Attention Network improved accuracy 

in aerial and occluded views, addressing one of the major 

challenges in real-world surveillance scenarios [10]. Given 

this background, the present research aims to build a deep 

learning-based system capable of detecting motorcyclists, 

identifying helmet usage, and flagging violations in real-

time. The objective is to design a robust and scalable 

pipeline that integrates with surveillance camera feeds to 

support traffic law enforcement and smart city initiatives, 
ultimately reducing road accidents and fatalities.  

II. RELATED WORKS 

The detection of AI-generated images has evolved rapidly in 

parallel with generative model advancements. Early 

methods predominantly relied on statistical and signal-

processing techniques. For instance, Photo Response Non-

Uniformity (PRNU) analysis [6] exploited sensor-specific 

noise patterns to differentiate authentic images from 

synthetic content, while residual noise analysis [7] focused 

on inconsistencies in pixel-level noise introduced during 

image generation. Although effective in certain controlled 

scenarios, these methods struggled with post-processed 

images, compression artifacts, and high-quality outputs from 

modern generative models. With the emergence of GANs, 
researchers began identifying model-specific artifacts that 

could serve as detection cues. Studies highlighted the 

presence of checkerboard patterns, color inconsistencies, 

and spectral anomalies in GAN-generated images [8]. These 

observations motivated the transition to deep learning-based 

classifiers capable of automatically learning discriminative 

features from data. Convolutional Neural Networks (CNNs) 

quickly became a dominant paradigm, with architectures 

such as XceptionNet [9] and ResNet variants [10] 

demonstrating robust performance across multiple 

generative sources. CNN-based approaches typically focus 

on local spatial inconsistencies, texture irregularities, and 
subtle anomalies that are difficult to perceive visually but 

are consistent across synthetic images. Recently, Vision 

Transformers (ViTs) [11] have been applied to image 

forgery detection, offering the advantage of capturing long-

range dependencies and global context, which is particularly 

useful for detecting subtle manipulations spanning large 

image regions. Furthermore, multimodal detection 

approaches [12] integrate auxiliary information such as 

textual descriptions, metadata, or facial attributes alongside 

visual analysis, improving performance in scenarios where 

images are accompanied by other modalities. Benchmark 
datasets have played a crucial role in advancing research. 

FaceForensics++ [13] provides a comprehensive collection 

of manipulated videos and frames for training and 

evaluation, while the DeepFake Detection Challenge 

(DFDC) [14] offers a large-scale real-world dataset for 

benchmarking detection methods under diverse conditions. 

StyleGAN-generated datasets [15] allow controlled 

experiments to evaluate detection robustness against state-

of-the-art generative models. Competitions such as Kaggle’s 

Deepfake Challenge have further accelerated progress by 

promoting standardized evaluation and fostering novel 

detection strategies. Despite these advancements, a 
persistent challenge remains: generalization to unseen or 

emerging generative models [16]. Models trained on 

specific GAN architectures often fail to detect images 

generated by newer or unseen generators, highlighting the 

need for more robust, domain-agnostic detection strategies. 

Hybrid methods that combine spatial, frequency-domain, 

and attention-based features, along with continual learning 

frameworks, represent promising directions for overcoming 

this limitation. The field of AI-generated image detection 

has experienced rapid evolution, driven by the increasing 

realism of generative models such as GANs, VAEs, and 
diffusion models. Early approaches relied heavily on 

statistical and signal-processing methods. Photo Response 

Non-Uniformity (PRNU) analysis [6] leveraged sensor-

specific noise to identify image authenticity, while noise 

residual analysis and double JPEG detection [7] exploited 

compression artifacts to distinguish real from synthetic 

content. Although effective for early GAN outputs, these 

methods struggled with high-quality synthetic images and 

post-processed manipulations. With the advancement of 
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GANs, researchers observed model-specific artifacts such as 

checkerboard patterns, unnatural color distributions, and 

spectral anomalies in the frequency domain [8]. These 

insights prompted the use of machine learning models that 

can automatically learn discriminative features. 
Convolutional Neural Networks (CNNs), including 

XceptionNet [9], ResNet [10], and DenseNet variants [26], 

became the backbone of many detection systems due to their 

ability to capture local texture inconsistencies, unnatural 

blending, and pixel-level irregularities. CNN-based methods 

have shown strong performance on benchmark datasets such 

as FaceForensics++ [13] and DFDC [14]. Recent research 

has incorporated transformer-based architectures to address 

the limitations of CNNs in modeling long-range 

dependencies. Vision Transformers (ViTs) [11] and hybrid 

CNN-Transformer models [21] capture global context 

across images, making them particularly effective in 
detecting subtle manipulations spanning large regions, 

including backgrounds and facial features. Multimodal 

approaches have also emerged, integrating image analysis 

with auxiliary data such as textual descriptions, audio cues, 

or metadata, resulting in more robust detection performance 

in complex scenarios [12,27]. Frequency-domain analysis 

has become an important complementary technique. 

Techniques that analyze Discrete Fourier Transform (DFT) 

or Discrete Cosine Transform (DCT) coefficients can reveal 

spectral fingerprints left by upsampling layers in GANs, 

enabling classifiers to detect synthetic patterns that are 
imperceptible in the spatial domain [22,28]. Some studies 

have proposed hybrid models combining spatial, frequency, 

and transformer-based features to improve generalization to 

unseen generators [25]. Benchmark datasets and 

competitions have accelerated research in this domain. 

FaceForensics++ [13] provides a large-scale dataset of 

manipulated facial videos and frames, while DFDC [14] 

offers real-world video data for robust evaluation. 

StyleGAN-generated datasets [15] allow controlled 

experiments to assess detection capabilities against high-

fidelity synthetic images. Other datasets, such as Celeb-DF 

[29] and DeeperForensics-1.0 [30], provide additional 
diversity in generative models, lighting, and post-processing 

conditions, helping to address the generalization problem. 

Competitions such as Kaggle’s Deepfake Challenge [31] 

further encouraged standardized evaluation, promoting 

reproducible results and fostering novel methods. Despite 

these advances, several challenges remain. Generalization to 

unseen generative models continues to be a major concern, 

as classifiers trained on specific GAN variants may fail on 

newer or more advanced models [16,32]. Additionally, 

adversarial attacks, compression, and post-processing can 

significantly degrade detection performance [33]. Research 
is increasingly focusing on ensemble and hybrid detection 

strategies, self-supervised learning, and domain adaptation 

to overcome these limitations and ensure robust AI-

generated image detection in real-world applications. 

 

III. METHODOLOGY 

The proposed framework for AI-generated image detection 

is structured as a multi-stage pipeline, combining 

preprocessing, feature extraction, model architecture 

optimization, and classification. The goal is to detect subtle 

inconsistencies inherent to AI-generated images, which may 

manifest in both spatial and frequency domains, while 

ensuring robustness to different generative models, image 
resolutions, and post-processing manipulations. By 

leveraging complementary techniques such as CNNs, 

transformers, and frequency-domain analysis, the 

framework provides a comprehensive approach to AI-image 

forensics.  

A. Data Preprocessing 

Data preprocessing is a crucial step that directly impacts the 

effectiveness of downstream detection models. Raw images 

often contain variations in size, illumination, contrast, and 

compression artifacts that can confuse machine learning 

models. To mitigate this, images are resized to a uniform 

resolution, typically 224×224 or 256×256 pixels, depending 
on the backbone network requirements. Color normalization 

and histogram equalization are applied to reduce 

illumination differences across datasets [17]. Grayscale 

conversion is optionally applied to emphasize structural and 

textural inconsistencies over semantic content, which is 

particularly useful when detecting GAN-generated images 

where color distributions may be subtly distorted. 

Frequency-domain transformations, such as Discrete Cosine 

Transform (DCT) and Discrete Fourier Transform (DFT), 

are employed to expose spectral artifacts caused by 

upsampling, convolutional layers, or interpolation during 
image synthesis [18]. Data augmentation is extensively used 

to improve model generalization. Techniques include 

random rotations, horizontal and vertical flipping, cropping, 

Gaussian noise injection, and contrast adjustment. These 

augmentations simulate real-world variability, including 

camera distortions, lighting changes, and minor post-

processing operations, ensuring that models are robust to 
diverse image conditions.  

B. Feature Extraction 

The feature extraction stage aims to capture discriminative 

patterns indicative of synthetic content. Convolutional 

Neural Networks (CNNs) are the primary tool for learning 

local spatial features, including textural inconsistencies, 

edge irregularities, unnatural blending, and repeating 

patterns typical of GAN-generated images [19]. Deeper 

CNN architectures, such as XceptionNet and ResNet 

variants, have demonstrated strong capabilities in capturing 
high-level texture and fine-grained spatial anomalies [9,10]. 

Transformers, particularly Vision Transformers (ViTs), are 

employed to model long-range dependencies and global 

context across the entire image [20]. This is critical for 

identifying artifacts that span large areas, such as subtle 

misalignments or unnatural object placements. Hybrid 

architectures that combine CNNs for local feature extraction 

and transformers for global attention offer the best of both 

worlds, integrating detailed texture information with holistic 

scene understanding [21]. Frequency-domain features 

complement spatial representations by capturing periodic 

artifacts and spectral discrepancies introduced during 
generative synthesis. These features are particularly 
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effective in detecting checkerboard artifacts, aliasing effects, 

and non-natural frequency distributions resulting from 

upsampling layers in GANs [22]. By combining spatial and 

frequency-domain features, the model gains a more robust 

and comprehensive view of image authenticity.  

C. Model Architectures 

Several architectures are considered for the classification 

stage. CNN-based models, including XceptionNet and 

ResNet, serve as baseline classifiers due to their proven 

ability to capture subtle spatial inconsistencies [9,10]. ViT-

based models and hybrid CNN-Transformer frameworks 
enhance detection of global anomalies and are especially 

effective for high-resolution images [11,21]. To address 

class imbalance between real and synthetic images, training 

incorporates cross-entropy loss with optional focal loss or 

weighted loss functions [23]. These modifications prevent 

the model from being biased towards the majority class and 

ensure robust detection across datasets with different 

proportions of AI-generated images. Furthermore, multi-

scale feature extraction, where intermediate feature maps 

from various layers are aggregated, enhances detection 

performance by capturing both fine-grained and coarse 
anomalies.  

D. Decision Logic and Classification 

The classification stage produces probability scores 

indicating the likelihood that an image is AI-generated. For 

binary classification, threshold-based decision rules are 

used, while softmax outputs enable multi-class classification 
to identify the specific generative model responsible for 

creating the image, such as StyleGAN, BigGAN, or 

diffusion-based models [24]. Ensemble strategies, which 

combine predictions from multiple classifiers or feature 

modalities (spatial CNN, frequency-domain analysis, 

transformer-based global features), have been shown to 

improve generalization and robustness to adversarial 

perturbations or post-processing attacks [25]. Additionally, 

confidence-based voting mechanisms and uncertainty 

estimation can be integrated to flag images where the 

classifier is less certain, enabling human-in-the-loop 

verification for high-stakes applications. 
 

IV. DATASETS 

Robust evaluation of AI-generated image detection methods 

requires diverse and standardized datasets that reflect a wide 

range of generative models, image qualities, and post-

processing conditions. These datasets serve as benchmarks 

for comparing detection techniques and for training deep 

learning models capable of generalizing across different 

types of synthetic content. 

A. Image Datasets 

FaceForensics++ (FF++) [13] is one of the most widely 

used datasets for evaluating image and video forgery 

detection. It contains manipulated facial videos generated 

using various deepfake techniques, including Face2Face, 

FaceSwap, and DeepFakes. The dataset provides both raw 

and compressed versions of videos, enabling evaluation of 

model robustness under different compression levels and 

noise conditions. DeepFake Detection Challenge (DFDC) 

Dataset [14] was released by Facebook and Kaggle to 

stimulate research in deepfake detection. It includes 

thousands of video clips of real and AI-manipulated content 

with multiple actors and varied lighting conditions. DFDC 
emphasizes real-world conditions, such as compression 

artifacts, diverse camera angles, and occlusions, which are 

critical for training models intended for deployment in 

practical scenarios. StyleGAN-Generated Image Datasets 

[15] provide high-resolution synthetic images of faces, 

animals, and objects. These datasets are particularly useful 

for detecting GAN-specific artifacts, including subtle 

inconsistencies in texture, color distribution, and spectral 

domain anomalies. StyleGAN2 and StyleGAN3 outputs 

offer increasingly realistic synthetic images, posing 

significant challenges for detection models. Celeb-DF [29] 

is a large-scale dataset consisting of celebrity faces with 
high-quality deepfake manipulations. It is designed to 

overcome the limitations of earlier datasets, such as low 

resolution and limited diversity in expressions or 

backgrounds. This dataset is widely used to benchmark both 

CNN and transformer-based detection models. 

DeeperForensics-1.0 [30] provides over 60,000 videos of 

manipulated facial content generated using multiple 

synthesis methods. The dataset focuses on real-world post-

processing scenarios such as noise, compression, and subtle 

lighting variations, challenging models to generalize beyond 

clean synthetic samples. 

B. Multi-Generative and Cross-Domain Datasets 

 

To address the limitation of overfitting to specific generative 

models, several studies utilize multi-generative datasets that 

combine outputs from GANs, VAEs, and diffusion-based 

models [16,32]. These datasets enable evaluation of 
generalization capabilities and highlight challenges in 

detecting images from unseen generators. Additionally, 

cross-domain datasets incorporate images from varied 

sources including medical imagery, artwork, satellite 

images, and natural scenes [34]. These datasets are crucial 

for assessing the adaptability of detection models beyond 

facial or common object images. For instance, synthetic 

satellite images generated by GANs can simulate urban 

expansion or environmental changes, which must be 

detected to ensure reliability in scientific applications. 

C. Benchmark Protocols 

 

Benchmarking AI-generated image detection relies on 

standardized protocols to ensure fair and reproducible 

comparisons, typically involving the division of datasets 

into training, validation, and testing sets with careful 

measures to prevent leakage of generative models across 
splits. Evaluation tasks commonly include binary 

classification, distinguishing real from AI-generated images, 

as well as multi-class tasks that identify the specific 

generative model responsible for an image, such as 

StyleGAN, BigGAN, or diffusion-based models [24], and 

cross-model generalization tests where models are evaluated 

on unseen generators to assess robustness [16]. Beyond 
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conventional splits, some benchmarks simulate real-world 

conditions through image compression, resizing, cropping, 

blurring, or color jittering, while temporal benchmarks for 

video sequences assess consistency across frames using 

metrics like temporal LPIPS (tLPIPS) or frame-wise 
accuracy [34]. Public repositories and competitions, 

including Kaggle’s Deepfake Challenge [31] and the AI 

City Challenge, further standardize evaluation by providing 

datasets, baseline models, and scripts, while promoting 

innovation through challenges that require hybrid methods 

combining spatial, frequency, and temporal features. 

Collectively, these datasets, benchmark protocols, and 

competitions form the foundation for developing, testing, 

and refining AI-generated image detection models, ensuring 

comprehensive evaluation across diverse generative models, 

post-processing conditions, and real-world scenarios, and 

thereby advancing the state-of-the-art in detection methods.  
 

V. RESULT ANALYSIS 

 

The evaluation of AI-generated image detection models 

demonstrates significant progress in distinguishing synthetic 

content from real images, but also highlights ongoing 

challenges related to generalization, model robustness, and 

cross-domain performance. Results are typically reported 

using standard metrics such as accuracy, precision, recall, 

F1-score, Area Under the Receiver Operating Characteristic 

curve (AUC-ROC), and more specialized measures like 
temporal consistency for videos or frequency-domain 

anomaly detection scores [17,19,22,34]. 

A. Spatial-Domain Performance 

 

CNN-based models, including XceptionNet [9] and ResNet 

variants [10], achieve high accuracy on datasets like 
FaceForensics++ [13] and StyleGAN-generated images 

[15], often exceeding 90% in controlled settings. These 

models are particularly effective at capturing local artifacts 

such as unnatural edges, blending inconsistencies, or texture 

irregularities. Hybrid CNN-Transformer architectures [21] 

further improve performance by modeling long-range 

dependencies, reducing misclassifications on images with 

subtle or globally distributed anomalies. 

B. Frequency-Domain Analysis 

 

Incorporating frequency-domain features, via Discrete 

Cosine Transform (DCT) or Fourier analysis [18,22], has 

shown to enhance detection of GAN-specific artifacts that 

are invisible in the spatial domain. Models leveraging these 

features often achieve improved recall and reduced false 

negatives, particularly when analyzing images generated by 

newer GAN architectures (e.g., StyleGAN3) or diffusion-
based models [3,24]. This dual-domain approach has 

become increasingly important for robust detection across 

multiple generative models. 

C. Temporal Consistency for Video 

For video-based datasets such as DFDC [14] or DeepFake 

Detection Challenge sequences, temporal coherence is 

crucial. Evaluations using frame-wise accuracy and 

temporal LPIPS (tLPIPS) [34] indicate that CNN-based 

frame-by-frame detection may be insufficient for real-world 

deployment due to flickering false positives. Transformer-

based video models and recurrent architectures that integrate 
temporal context significantly reduce inconsistencies across 

frames, achieving smoother detection outputs and higher 

overall F1-scores. 

D. Cross-Model and Cross-Domain Generalization 

 

A key challenge in detection is generalization to unseen 
generative models or cross-domain images [16]. 

Experimental results reveal that models trained solely on 

one type of GAN often experience substantial drops in 

accuracy when applied to outputs from other GANs or 

diffusion models. Ensemble methods, combining CNN, 

transformer, and frequency-domain detectors, demonstrate 

improved robustness, maintaining high accuracy (>85%) 

across multiple generators and post-processed images. 

Multi-dataset training and domain adaptation techniques 

further enhance generalization to novel domains, such as 

medical imagery or artwork, where synthetic generation 
techniques may differ significantly from standard face 

datasets. 

E. Ablation and Comparative Studies 

 

Ablation studies indicate that each component of the 

detection pipeline—spatial CNN features, transformer-based 
global context, and frequency-domain anomalies—

contributes significantly to overall performance. Removing 

any component typically reduces accuracy, F1-score, and 

robustness, particularly in challenging conditions such as 

low resolution, compression artifacts, or adversarial post-

processing. Comparisons with traditional handcrafted 

feature methods, such as PRNU or noise residual analysis 

[6,7], consistently show that deep learning-based approaches 

outperform classical methods by a large margin, particularly 

in high-fidelity synthetic images. 

F. Practical Insights 

 

Experimental outcomes also highlight practical 

considerations for deployment. Real-time detection remains 

feasible with lightweight CNN-based models, though hybrid 

and transformer-based models provide better accuracy at the 

cost of higher computational requirements. Frequency-
domain analysis adds negligible overhead while improving 

robustness. Furthermore, ensemble methods achieve a 

balance between precision and recall, reducing false 

positives and false negatives—a critical factor for 

applications in cybersecurity, media verification, and social 

media content moderation. Overall, the results demonstrate 

that modern deep learning frameworks can achieve high 

accuracy, robustness, and generalization for AI-generated 

image detection. However, challenges remain in handling 

images from unseen generative models, highly compressed 

or post-processed content, and non-facial domains. These 

findings underline the importance of multi-domain datasets, 
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cross-model evaluation, and hybrid detection strategies to 

ensure reliable and scalable detection systems in real-world 

applications. 

VI. CONCLUSION & FUTURE SCOPE 

Deep learning-based detection of AI-generated images has 
become essential in addressing challenges posed by highly 

realistic synthetic content produced by GANs, VAEs, and 

diffusion models, which have transformed creative 

industries while raising concerns about misinformation, 

copyright infringement, and digital trust. CNNs effectively 

capture local anomalies such as texture irregularities and 

edge inconsistencies, transformers model global context and 

long-range dependencies, and frequency-domain analysis 

highlights subtle artifacts invisible in the spatial domain. 

Ensemble and hybrid models further improve robustness, 

particularly in cross-model and cross-domain scenarios, 

achieving high accuracy, precision, recall, and F1-scores on 
benchmark datasets like FaceForensics++, DFDC, and 

StyleGAN-generated images. Despite these advances, 

challenges remain in generalizing to unseen generative 

models, handling post-processed or low-resolution images, 

maintaining temporal consistency in video sequences, and 

ensuring performance across diverse content domains. 

Looking forward, research should emphasize multimodal 

detection combining visual, textual, and metadata cues, self-

supervised and semi-supervised learning to reduce reliance 

on labeled datasets, and the development of lightweight, 

efficient models for real-time deployment in social media 
and surveillance applications. Cross-model and cross-

domain robustness, interpretable and explainable detection 

mechanisms, and ethical frameworks with standardized 

benchmarks are also critical for responsible adoption. By 

integrating these directions, future systems can achieve 

reliable, scalable, and transparent detection of synthetic 

media, mitigating associated risks while safeguarding 

information integrity and public trust.   

REFERENCES 

[1]  Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, 
D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative 

adversarial nets. Advances in Neural Information Processing 

Systems, 27, 2672–2680. 

[2]  Kingma, D. P., & Welling, M. (2014). Auto-encoding variational 

Bayes. International Conference on Learning Representations 

(ICLR). 

[3]  Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion 
probabilistic models. Advances in Neural Information Processing 

Systems, 33, 6840–6851. 

[4]  Chesney, R., & Citron, D. K. (2019). Deep fakes: A looming 
challenge for privacy, democracy, and national security. California 

Law Review, 107(6), 1753–1819. 

[5]  Farid, H. (2009). Image forgery detection. IEEE Signal Processing 

Magazine, 26(2), 16–25. 

[6]  Lukás, J., Fridrich, J., & Goljan, M. (2006). Digital camera 

identification from sensor pattern noise. IEEE Transactions on 

Information Forensics and Security, 1(2), 205–214. 

[7]  Stamm, M. C., Wu, M., & Liu, K. J. R. (2013). Information 

forensics: An overview of the first decade. IEEE Access, 1, 167–

200. 

[8]  Wang, T., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B. 

(2018). High-resolution image synthesis and semantic manipulation 

with conditional GANs. IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 8798–8807. 

[9]  Chollet, F. (2017). Xception: Deep learning with depthwise 
separable convolutions. IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 1251–1258. 

[10]  He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning 
for image recognition. IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 770–778. 

[11]  Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, 
X., Unterthiner, T., ... & Houlsby, N. (2021). An image is worth 

16x16 words: Transformers for image recognition at scale. 

International Conference on Learning Representations (ICLR). 

[12]  Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, 

D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative 

adversarial nets. NIPS, 27, 2672–2680. 

[13]  Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & 

Nießner, M. (2019). FaceForensics++: Learning to detect 
manipulated facial images. IEEE International Conference on 

Computer Vision (ICCV), 1–11. 

[14]  Dolhansky, B., Howes, R., Pflaum, B., Baram, N., & Ferrer, C. C. 
(2019). The Deepfake Detection Challenge (DFDC) dataset. 

arXiv:1910.08854. 

[15]  Karras, T., Laine, S., Aila, T. (2019). A style-based generator 

architecture for generative adversarial networks. IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 4401–4410. 

[16]  Yu, N., Li, X., Tan, W., & Yu, L. (2021). Generalizing AI-generated 

image detection to unseen GANs. IEEE Transactions on Information 

Forensics and Security, 16, 3954–3966. 

[17]  Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing 

(3rd ed.). Pearson. 

[18]  Fridrich, J., Soukal, D., & Lukas, J. (2003). Detection of copy-move 
forgery in digital images. Digital Forensic Research Workshop 

(DFRWS), 1–6. 

[19]  Bayar, B., & Stamm, M. C. (2016). A deep learning approach to 
universal image manipulation detection using a new convolutional 

layer. ACM Workshop on Information Hiding and Multimedia 

Security (IH&MMSec), 5–10. 

[20]  Wang, H., & Deng, W. (2021). Deep learning for image forensics: A 

survey. IEEE Transactions on Information Forensics and Security, 

16, 545–567. 

[21]  Li, Y., Li, B., Liu, H., Li, J., & Lyu, S. (2020). CNN-generated 
images are surprisingly easy to spot… for now. IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 8695–8704. 

[22]  Durall, R., Keuper, M., & Keuper, J. (2020). Unmasking deepfakes 
with simple features. IEEE International Conference on Computer 

Vision (ICCV) Workshops, 1–9. 

[23]  Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal 
loss for dense object detection. IEEE International Conference on 

Computer Vision (ICCV), 2980–2988. 

[24]  Zhang, X., Wang, X., Qi, H., & Metaxas, D. (2020). Detecting 
GAN-generated images via saturating color channels. IEEE 

Transactions on Information Forensics and Security, 15, 3031–3044. 

[25]  Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & 
Niessner, M. (2020). FaceForensics++: Learning to detect 

manipulated facial images. IEEE Transactions on Information 

Forensics and Security, 15, 2–14. 

[26]  Li, Y., Lyu, S. (2019). Exposing deepfake videos by detecting face 

warping artifacts. IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 46–55. 

[27]  Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). 
Image quality assessment: From error visibility to structural 

similarity. IEEE Transactions on Image Processing, 13(4), 600–612. 

[28]  Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. 
(2018). The unreasonable effectiveness of deep features as a 

perceptual metric. IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 586–595. 

[29]  Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & 

Hochreiter, S. (2017). GANs trained by a two time-scale update rule 
converge to a local Nash equilibrium. Advances in Neural 

Information Processing Systems, 30, 6626–6637. 



12 
IJSRTM-2583-7141 

 

 

 

[30]  Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T. 
(2021). Alias-free generative adversarial networks. NeurIPS, 34, 

852–863. 

[31]  Kaggle. Deepfake Detection Challenge. Retrieved from 

https://www.kaggle.com/c/deepfake-detection-challenge 

[32]  Rossler, A., et al. (2019). FaceForensics++: Learning to detect 

manipulated facial images. arXiv preprint arXiv:1901.08971. 

[33]  Yang, X., Li, Y., & Lyu, S. (2021). Exposing GAN-synthesized 
faces using inconsistent corneal specular highlights. IEEE 

Transactions on Information Forensics and Security, 16, 3542–3555. 

[34]  Li, Y., Wang, X., & Lyu, S. (2021). Temporal consistency for 

deepfake video detection. IEEE Transactions on Information 

Forensics and Security, 16, 3586–3598. 

 


	I. Introduction
	II. Related Works
	III. Methodology
	A. Data Preprocessing
	Data preprocessing is a crucial step that directly impacts the effectiveness of downstream detection models. Raw images often contain variations in size, illumination, contrast, and compression artifacts that can confuse machine learning models. To mi...
	B. Feature Extraction
	C. Model Architectures
	D. Decision Logic and Classification

	IV. Datasets
	A. Image Datasets
	B. Multi-Generative and Cross-Domain Datasets
	C. Benchmark Protocols

	V. Result Analysis
	A. Spatial-Domain Performance
	B. Frequency-Domain Analysis
	C. Temporal Consistency for Video
	D. Cross-Model and Cross-Domain Generalization
	E. Ablation and Comparative Studies
	F. Practical Insights

	VI. Conclusion & Future Scope
	References


