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Abstract— The proliferation of generative models such as
Generative  Adversarial  Networks (GANs), Variational
Autoencoders (VAEs), and diffusion-based models has enabled
the creation of highly realistic synthetic images, raising concerns
in digital trust, cybersecurity, and misinformation. Automatic
detection of Al-generated images has therefore become a critical
research problem. Traditional forensic approaches relying on
handcrafted features are insufficient to capture subtle artifacts
introduced by modern generators. In this paper, we survey and
propose machine learning-based frameworks for detecting Al-
generated images, emphasizing convolutional neural networks
(CNNs), frequency-domain analysis, and transformer-based
architectures. The study includes a comprehensive discussion of
benchmark datasets, preprocessing techniques, feature extraction
strategies, and evaluation metrics. Experimental results
demonstrate that hybrid architectures combining spatial and
frequency-domain features with attention mechanisms provide
robust performance across diverse generative models. Finally, we
discuss current challenges, limitations, and future directions,

including generalization to unseen generative models,
adversarial robustness, and ethical considerations for
deployment.

Keywords— Al-generated images, deep learning, generative
adversarial networks, diffusion models, image forensics,
convolutional neural networks, transformer, frequency-domain
analysis, digital media authentication, deepfake detection.

I. INTRODUCTION

The rapid advancement of generative models, including
Generative Adversarial Networks (GANs) [1], Variational
Autoencoders (VAESs) [2], and diffusion models [3], has
revolutionized the creation of synthetic images with high
visual fidelity. These models can generate photorealistic
human faces, landscapes, artwork, and other content that is
often indistinguishable from authentic photographs. While
this capability has driven innovation in entertainment,
design, and scientific visualization, it has also created
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significant societal and technical challenges. In particular,
the proliferation of Al-generated images has led to concerns
over misinformation, manipulation in media, copyright
violations, and potential threats to digital trust [4]. Fake
images can propagate through social media, news outlets,
and messaging platforms, making it increasingly difficult for
users to discern authentic content. Detecting Al-generated
images has thus emerged as a critical task at the intersection
of computer vision, machine learning, and cybersecurity.
Traditional image forensic techniques, including noise
analysis, sensor pattern detection, and metadata inspection
[5], are increasingly insufficient for modern generative
models, which produce outputs with minimal perceptible
artifacts. Deep learning approaches, in contrast, are capable
of learning complex hierarchical features from data,
enabling the detection of subtle inconsistencies in spatial
patterns, frequency domains, and semantic coherence. These
methods leverage convolutional neural networks (CNNs) to
capture local texture anomalies, transformer-based
architectures to model long-range dependencies and global
relationships, and frequency-domain analyses to detect
synthetic noise patterns imperceptible to the human eye. The
rise of large-scale Al image generation, such as StyleGAN
[6], BIigGAN [7], and Stable Diffusion [8], further
underscores the urgency of developing robust detection
frameworks. State-of-the-art models can create images that
fool both humans and classical classifiers, necessitating
hybrid detection strategies that combine multiple feature
extraction techniques, attention mechanisms, and adversarial
training for generalization. Furthermore, the availability of
standardized datasets such as FaceForensics++ [9], DFDC
[10], and GAN-generated corpora has enabled
benchmarking and evaluation of detection algorithms under
controlled and real-world conditions. In this work, we
investigate machine learning frameworks for the detection
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of Al-generated images, emphasizing the role of CNNs,
transformer architectures, and frequency-domain analysis.
We discuss preprocessing strategies, feature extraction
methods, evaluation metrics, and dataset considerations,
aiming to provide a comprehensive overview of the current
state-of-the-art. Additionally, we address challenges such as
generalization to unseen generative models, robustness
against  post-processing, and  adversarial  attacks,
highlighting potential future research directions. By
providing a structured analysis, this paper seeks to support
researchers, practitioners, and policymakers in developing
reliable systems for Al-generated image detection,
ultimately contributing to digital content integrity and
security.

Real

Synthetic

- S—
Tom
Fig. 1 Al Generated Image v/s Real Image [2]

For instance, Real-Time Helmet Violation Detection using
YOLOV5 demonstrated robust performance under varying
lighting and weather conditions [8]. Similarly, a study on
Multi-Class Helmet Violation Detection using YOLOv8
with Few-Shot Data Sampling showed that reliable
detection is possible even with limited annotated data [9].
Furthermore, attention-based models such as the Residual
Transformer-Spatial Attention Network improved accuracy
in aerial and occluded views, addressing one of the major
challenges in real-world surveillance scenarios [10]. Given
this background, the present research aims to build a deep
learning-based system capable of detecting motorcyclists,
identifying helmet usage, and flagging violations in real-
time. The objective is to design a robust and scalable
pipeline that integrates with surveillance camera feeds to
support traffic law enforcement and smart city initiatives,
ultimately reducing road accidents and fatalities.

Il. RELATED WORKS

The detection of Al-generated images has evolved rapidly in
parallel with generative model advancements. Early
methods predominantly relied on statistical and signal-
processing techniques. For instance, Photo Response Non-
Uniformity (PRNU) analysis [6] exploited sensor-specific
noise patterns to differentiate authentic images from
synthetic content, while residual noise analysis [7] focused
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on inconsistencies in pixel-level noise introduced during
image generation. Although effective in certain controlled
scenarios, these methods struggled with post-processed
images, compression artifacts, and high-quality outputs from
modern generative models. With the emergence of GANS,
researchers began identifying model-specific artifacts that
could serve as detection cues. Studies highlighted the
presence of checkerboard patterns, color inconsistencies,
and spectral anomalies in GAN-generated images [8]. These
observations motivated the transition to deep learning-based
classifiers capable of automatically learning discriminative
features from data. Convolutional Neural Networks (CNNS)
quickly became a dominant paradigm, with architectures
such as XceptionNet [9] and ResNet variants [10]
demonstrating  robust  performance across multiple
generative sources. CNN-based approaches typically focus
on local spatial inconsistencies, texture irregularities, and
subtle anomalies that are difficult to perceive visually but
are consistent across synthetic images. Recently, Vision
Transformers (ViTs) [11] have been applied to image
forgery detection, offering the advantage of capturing long-
range dependencies and global context, which is particularly
useful for detecting subtle manipulations spanning large
image regions. Furthermore, multimodal detection
approaches [12] integrate auxiliary information such as
textual descriptions, metadata, or facial attributes alongside
visual analysis, improving performance in scenarios where
images are accompanied by other modalities. Benchmark
datasets have played a crucial role in advancing research.
FaceForensics++ [13] provides a comprehensive collection
of manipulated videos and frames for training and
evaluation, while the DeepFake Detection Challenge
(DFDC) [14] offers a large-scale real-world dataset for
benchmarking detection methods under diverse conditions.
StyleGAN-generated datasets [15] allow controlled
experiments to evaluate detection robustness against state-
of-the-art generative models. Competitions such as Kaggle’s
Deepfake Challenge have further accelerated progress by
promoting standardized evaluation and fostering novel
detection strategies. Despite these advancements, a
persistent challenge remains: generalization to unseen or
emerging generative models [16]. Models trained on
specific GAN architectures often fail to detect images
generated by newer or unseen generators, highlighting the
need for more robust, domain-agnostic detection strategies.
Hybrid methods that combine spatial, frequency-domain,
and attention-based features, along with continual learning
frameworks, represent promising directions for overcoming
this limitation. The field of Al-generated image detection
has experienced rapid evolution, driven by the increasing
realism of generative models such as GANs, VAEs, and
diffusion models. Early approaches relied heavily on
statistical and signal-processing methods. Photo Response
Non-Uniformity (PRNU) analysis [6] leveraged sensor-
specific noise to identify image authenticity, while noise
residual analysis and double JPEG detection [7] exploited
compression artifacts to distinguish real from synthetic
content. Although effective for early GAN outputs, these
methods struggled with high-quality synthetic images and
post-processed manipulations. With the advancement of
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GANs, researchers observed model-specific artifacts such as
checkerboard patterns, unnatural color distributions, and
spectral anomalies in the frequency domain [8]. These
insights prompted the use of machine learning models that
can  automatically  learn  discriminative  features.
Convolutional Neural Networks (CNNs), including
XceptionNet [9], ResNet [10], and DenseNet variants [26],
became the backbone of many detection systems due to their
ability to capture local texture inconsistencies, unnatural
blending, and pixel-level irregularities. CNN-based methods
have shown strong performance on benchmark datasets such
as FaceForensics++ [13] and DFDC [14]. Recent research
has incorporated transformer-based architectures to address
the limitations of CNNs in modeling long-range
dependencies. Vision Transformers (ViTs) [11] and hybrid
CNN-Transformer models [21] capture global context
across images, making them particularly effective in
detecting subtle manipulations spanning large regions,
including backgrounds and facial features. Multimodal
approaches have also emerged, integrating image analysis
with auxiliary data such as textual descriptions, audio cues,
or metadata, resulting in more robust detection performance
in complex scenarios [12,27]. Frequency-domain analysis
has become an important complementary technique.
Techniques that analyze Discrete Fourier Transform (DFT)
or Discrete Cosine Transform (DCT) coefficients can reveal
spectral fingerprints left by upsampling layers in GANS,
enabling classifiers to detect synthetic patterns that are
imperceptible in the spatial domain [22,28]. Some studies
have proposed hybrid models combining spatial, frequency,
and transformer-based features to improve generalization to
unseen generators [25]. Benchmark datasets and
competitions have accelerated research in this domain.
FaceForensics++ [13] provides a large-scale dataset of
manipulated facial videos and frames, while DFDC [14]
offers real-world video data for robust -evaluation.
StyleGAN-generated datasets [15] allow controlled
experiments to assess detection capabilities against high-
fidelity synthetic images. Other datasets, such as Celeb-DF
[29] and DeeperForensics-1.0 [30], provide additional
diversity in generative models, lighting, and post-processing
conditions, helping to address the generalization problem.
Competitions such as Kaggle’s Deepfake Challenge [31]
further encouraged standardized evaluation, promoting
reproducible results and fostering novel methods. Despite
these advances, several challenges remain. Generalization to
unseen generative models continues to be a major concern,
as classifiers trained on specific GAN variants may fail on
newer or more advanced models [16,32]. Additionally,
adversarial attacks, compression, and post-processing can
significantly degrade detection performance [33]. Research
is increasingly focusing on ensemble and hybrid detection
strategies, self-supervised learning, and domain adaptation
to overcome these limitations and ensure robust Al-
generated image detection in real-world applications.

I1l. METHODOLOGY

The proposed framework for Al-generated image detection
is structured as a multi-stage pipeline, combining
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preprocessing, feature extraction, model architecture
optimization, and classification. The goal is to detect subtle
inconsistencies inherent to Al-generated images, which may
manifest in both spatial and frequency domains, while
ensuring robustness to different generative models, image
resolutions, and post-processing manipulations. By
leveraging complementary techniques such as CNNs,
transformers, and frequency-domain analysis, the
framework provides a comprehensive approach to Al-image
forensics.

A. Data Preprocessing

Data preprocessing is a crucial step that directly impacts the
effectiveness of downstream detection models. Raw images
often contain variations in size, illumination, contrast, and
compression artifacts that can confuse machine learning
models. To mitigate this, images are resized to a uniform
resolution, typically 224x224 or 256x256 pixels, depending
on the backbone network requirements. Color normalization
and histogram equalization are applied to reduce
illumination differences across datasets [17]. Grayscale
conversion is optionally applied to emphasize structural and
textural inconsistencies over semantic content, which is
particularly useful when detecting GAN-generated images
where color distributions may be subtly distorted.
Frequency-domain transformations, such as Discrete Cosine
Transform (DCT) and Discrete Fourier Transform (DFT),
are employed to expose spectral artifacts caused by
upsampling, convolutional layers, or interpolation during
image synthesis [18]. Data augmentation is extensively used
to improve model generalization. Techniques include
random rotations, horizontal and vertical flipping, cropping,
Gaussian noise injection, and contrast adjustment. These
augmentations simulate real-world variability, including
camera distortions, lighting changes, and minor post-
processing operations, ensuring that models are robust to
diverse image conditions.

B. Feature Extraction

The feature extraction stage aims to capture discriminative
patterns indicative of synthetic content. Convolutional
Neural Networks (CNNSs) are the primary tool for learning
local spatial features, including textural inconsistencies,
edge irregularities, unnatural blending, and repeating
patterns typical of GAN-generated images [19]. Deeper
CNN architectures, such as XceptionNet and ResNet
variants, have demonstrated strong capabilities in capturing
high-level texture and fine-grained spatial anomalies [9,10].
Transformers, particularly Vision Transformers (ViTs), are
employed to model long-range dependencies and global
context across the entire image [20]. This is critical for
identifying artifacts that span large areas, such as subtle
misalignments or unnatural object placements. Hybrid
architectures that combine CNNs for local feature extraction
and transformers for global attention offer the best of both
worlds, integrating detailed texture information with holistic
scene understanding [21]. Frequency-domain features
complement spatial representations by capturing periodic
artifacts and spectral discrepancies introduced during
generative synthesis. These features are particularly
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effective in detecting checkerboard artifacts, aliasing effects,
and non-natural frequency distributions resulting from
upsampling layers in GANs [22]. By combining spatial and
frequency-domain features, the model gains a more robust
and comprehensive view of image authenticity.

C. Model Architectures

Several architectures are considered for the classification
stage. CNN-based models, including XceptionNet and
ResNet, serve as baseline classifiers due to their proven
ability to capture subtle spatial inconsistencies [9,10]. ViT-
based models and hybrid CNN-Transformer frameworks
enhance detection of global anomalies and are especially
effective for high-resolution images [11,21]. To address
class imbalance between real and synthetic images, training
incorporates cross-entropy loss with optional focal loss or
weighted loss functions [23]. These modifications prevent
the model from being biased towards the majority class and
ensure robust detection across datasets with different
proportions of Al-generated images. Furthermore, multi-
scale feature extraction, where intermediate feature maps
from various layers are aggregated, enhances detection
performance by capturing both fine-grained and coarse
anomalies.

D. Decision Logic and Classification

The classification stage produces probability scores
indicating the likelihood that an image is Al-generated. For
binary classification, threshold-based decision rules are
used, while softmax outputs enable multi-class classification
to identify the specific generative model responsible for
creating the image, such as StyleGAN, BigGAN, or
diffusion-based models [24]. Ensemble strategies, which
combine predictions from multiple classifiers or feature
modalities (spatial CNN, frequency-domain analysis,
transformer-based global features), have been shown to
improve generalization and robustness to adversarial
perturbations or post-processing attacks [25]. Additionally,
confidence-based voting mechanisms and uncertainty
estimation can be integrated to flag images where the
classifier is less certain, enabling human-in-the-loop
verification for high-stakes applications.

IV. DATASETS

Robust evaluation of Al-generated image detection methods
requires diverse and standardized datasets that reflect a wide
range of generative models, image qualities, and post-
processing conditions. These datasets serve as benchmarks
for comparing detection techniques and for training deep
learning models capable of generalizing across different
types of synthetic content.

A. Image Datasets

FaceForensics++ (FF++) [13] is one of the most widely
used datasets for evaluating image and video forgery
detection. It contains manipulated facial videos generated
using various deepfake techniques, including Face2Face,
FaceSwap, and DeepFakes. The dataset provides both raw
and compressed versions of videos, enabling evaluation of
model robustness under different compression levels and
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noise conditions. DeepFake Detection Challenge (DFDC)
Dataset [14] was released by Facebook and Kaggle to
stimulate research in deepfake detection. It includes
thousands of video clips of real and Al-manipulated content
with multiple actors and varied lighting conditions. DFDC
emphasizes real-world conditions, such as compression
artifacts, diverse camera angles, and occlusions, which are
critical for training models intended for deployment in
practical scenarios. StyleGAN-Generated Image Datasets
[15] provide high-resolution synthetic images of faces,
animals, and objects. These datasets are particularly useful
for detecting GAN-specific artifacts, including subtle
inconsistencies in texture, color distribution, and spectral
domain anomalies. StyleGAN2 and StyleGAN3 outputs
offer increasingly realistic synthetic images, posing
significant challenges for detection models. Celeb-DF [29]
is a large-scale dataset consisting of celebrity faces with
high-quality deepfake manipulations. It is designed to
overcome the limitations of earlier datasets, such as low
resolution and limited diversity in expressions or
backgrounds. This dataset is widely used to benchmark both
CNN and transformer-based  detection  models.
DeeperForensics-1.0 [30] provides over 60,000 videos of
manipulated facial content generated using multiple
synthesis methods. The dataset focuses on real-world post-
processing scenarios such as noise, compression, and subtle
lighting variations, challenging models to generalize beyond
clean synthetic samples.

B. Multi-Generative and Cross-Domain Datasets

To address the limitation of overfitting to specific generative
models, several studies utilize multi-generative datasets that
combine outputs from GANs, VAEs, and diffusion-based
models [16,32]. These datasets enable evaluation of
generalization capabilities and highlight challenges in
detecting images from unseen generators. Additionally,
cross-domain datasets incorporate images from varied
sources including medical imagery, artwork, satellite
images, and natural scenes [34]. These datasets are crucial
for assessing the adaptability of detection models beyond
facial or common object images. For instance, synthetic
satellite images generated by GANs can simulate urban
expansion or environmental changes, which must be
detected to ensure reliability in scientific applications.

C. Benchmark Protocols

Benchmarking Al-generated image detection relies on
standardized protocols to ensure fair and reproducible
comparisons, typically involving the division of datasets
into training, validation, and testing sets with careful
measures to prevent leakage of generative models across
splits.  Evaluation tasks commonly include binary
classification, distinguishing real from Al-generated images,
as well as multi-class tasks that identify the specific
generative model responsible for an image, such as
StyleGAN, BigGAN, or diffusion-based models [24], and
cross-model generalization tests where models are evaluated
on unseen generators to assess robustness [16]. Beyond
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conventional splits, some benchmarks simulate real-world
conditions through image compression, resizing, cropping,
blurring, or color jittering, while temporal benchmarks for
video sequences assess consistency across frames using
metrics like temporal LPIPS (tLPIPS) or frame-wise
accuracy [34]. Public repositories and competitions,
including Kaggle’s Deepfake Challenge [31] and the Al
City Challenge, further standardize evaluation by providing
datasets, baseline models, and scripts, while promoting
innovation through challenges that require hybrid methods
combining spatial, frequency, and temporal features.
Collectively, these datasets, benchmark protocols, and
competitions form the foundation for developing, testing,
and refining Al-generated image detection models, ensuring
comprehensive evaluation across diverse generative models,
post-processing conditions, and real-world scenarios, and
thereby advancing the state-of-the-art in detection methods.

V. RESULT ANALYSIS

The evaluation of Al-generated image detection models
demonstrates significant progress in distinguishing synthetic
content from real images, but also highlights ongoing
challenges related to generalization, model robustness, and
cross-domain performance. Results are typically reported
using standard metrics such as accuracy, precision, recall,
F1-score, Area Under the Receiver Operating Characteristic
curve (AUC-ROC), and more specialized measures like
temporal consistency for videos or frequency-domain
anomaly detection scores [17,19,22,34].

A. Spatial-Domain Performance

CNN-based models, including XceptionNet [9] and ResNet
variants [10], achieve high accuracy on datasets like
FaceForensics++ [13] and StyleGAN-generated images
[15], often exceeding 90% in controlled settings. These
models are particularly effective at capturing local artifacts
such as unnatural edges, blending inconsistencies, or texture
irregularities. Hybrid CNN-Transformer architectures [21]
further improve performance by modeling long-range
dependencies, reducing misclassifications on images with
subtle or globally distributed anomalies.

B. Frequency-Domain Analysis

Incorporating frequency-domain features, via Discrete
Cosine Transform (DCT) or Fourier analysis [18,22], has
shown to enhance detection of GAN-specific artifacts that
are invisible in the spatial domain. Models leveraging these
features often achieve improved recall and reduced false
negatives, particularly when analyzing images generated by
newer GAN architectures (e.g., StyleGAN3) or diffusion-
based models [3,24]. This dual-domain approach has
become increasingly important for robust detection across
multiple generative models.

C. Temporal Consistency for Video

For video-based datasets such as DFDC [14] or DeepFake
Detection Challenge sequences, temporal coherence is
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crucial. Evaluations using frame-wise accuracy and
temporal LPIPS (tLPIPS) [34] indicate that CNN-based
frame-by-frame detection may be insufficient for real-world
deployment due to flickering false positives. Transformer-
based video models and recurrent architectures that integrate
temporal context significantly reduce inconsistencies across
frames, achieving smoother detection outputs and higher
overall F1-scores.

D. Cross-Model and Cross-Domain Generalization

A key challenge in detection is generalization to unseen
generative models or cross-domain images [16].
Experimental results reveal that models trained solely on
one type of GAN often experience substantial drops in
accuracy when applied to outputs from other GANs or
diffusion models. Ensemble methods, combining CNN,
transformer, and frequency-domain detectors, demonstrate
improved robustness, maintaining high accuracy (>85%)
across multiple generators and post-processed images.
Multi-dataset training and domain adaptation techniques
further enhance generalization to novel domains, such as
medical imagery or artwork, where synthetic generation
techniques may differ significantly from standard face
datasets.

E. Ablation and Comparative Studies

Ablation studies indicate that each component of the
detection pipeline—spatial CNN features, transformer-based
global context, and frequency-domain anomalies—
contributes significantly to overall performance. Removing
any component typically reduces accuracy, F1-score, and
robustness, particularly in challenging conditions such as
low resolution, compression artifacts, or adversarial post-
processing. Comparisons with traditional handcrafted
feature methods, such as PRNU or noise residual analysis
[6,7], consistently show that deep learning-based approaches
outperform classical methods by a large margin, particularly
in high-fidelity synthetic images.

F. Practical Insights

Experimental ~ outcomes also  highlight  practical
considerations for deployment. Real-time detection remains
feasible with lightweight CNN-based models, though hybrid
and transformer-based models provide better accuracy at the
cost of higher computational requirements. Frequency-
domain analysis adds negligible overhead while improving
robustness. Furthermore, ensemble methods achieve a
balance between precision and recall, reducing false
positives and false negatives—a critical factor for
applications in cybersecurity, media verification, and social
media content moderation. Overall, the results demonstrate
that modern deep learning frameworks can achieve high
accuracy, robustness, and generalization for Al-generated
image detection. However, challenges remain in handling
images from unseen generative models, highly compressed
or post-processed content, and non-facial domains. These
findings underline the importance of multi-domain datasets,

10



cross-model evaluation, and hybrid detection strategies to
ensure reliable and scalable detection systems in real-world
applications.

V1. CONCLUSION & FUTURE SCOPE

Deep learning-based detection of Al-generated images has
become essential in addressing challenges posed by highly
realistic synthetic content produced by GANs, VAEs, and
diffusion models, which have transformed creative
industries while raising concerns about misinformation,
copyright infringement, and digital trust. CNNs effectively
capture local anomalies such as texture irregularities and
edge inconsistencies, transformers model global context and
long-range dependencies, and frequency-domain analysis
highlights subtle artifacts invisible in the spatial domain.
Ensemble and hybrid models further improve robustness,
particularly in cross-model and cross-domain scenarios,
achieving high accuracy, precision, recall, and F1-scores on
benchmark datasets like FaceForensics++, DFDC, and
StyleGAN-generated images. Despite these advances,
challenges remain in generalizing to unseen generative
models, handling post-processed or low-resolution images,
maintaining temporal consistency in video sequences, and
ensuring performance across diverse content domains.
Looking forward, research should emphasize multimodal
detection combining visual, textual, and metadata cues, self-
supervised and semi-supervised learning to reduce reliance
on labeled datasets, and the development of lightweight,
efficient models for real-time deployment in social media
and surveillance applications. Cross-model and cross-
domain robustness, interpretable and explainable detection
mechanisms, and ethical frameworks with standardized
benchmarks are also critical for responsible adoption. By
integrating these directions, future systems can achieve
reliable, scalable, and transparent detection of synthetic
media, mitigating associated risks while safeguarding
information integrity and public trust.
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