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Abstract— Cricket has evolved into a technology-driven sport 

where decision accuracy plays a pivotal role in maintaining 

fairness and transparency. One of the most critical aspects of 

Decision Review System (DRS) is predicting the cricket ball’s 

trajectory after impact with the pad, which assists in adjudicating 

Leg Before Wicket (LBW) decisions. Traditional ball-tracking 

systems such as Hawk-Eye rely on multi-camera setups and 

physics-based models, which, while accurate, are expensive and 

prone to occasional errors due to occlusions, shadows, and 

complex bounce conditions. With advancements in deep learning 

and computer vision, it is now possible to develop a data-driven 

approach that learns ball dynamics directly from large datasets of 

match footage. In this work, we propose a deep learning–based 

cricket ball trajectory projection model that combines 

convolutional neural networks (CNNs) for spatial tracking, 

recurrent neural networks (RNNs/LSTMs) for temporal sequence 

modeling, and physics-informed loss functions for realistic 

trajectory prediction. The proposed method aims to provide a 

robust, cost-effective, and highly accurate alternative to 

traditional ball-tracking technologies for cricket DRS 

applications.   

 

Keywords— Cricket, Decision Review System (DRS), Ball 

Trajectory, Deep Learning, Convolutional Neural Networks 

(CNN), Long Short-Term Memory (LSTM), Computer Vision, 

Sports Analytics. 

I. INTRODUCTION 

The Decision Review System (DRS) has transformed 
modern cricket into a more transparent and fair sport by 

empowering players to contest umpire decisions through 

technology-assisted verification. Among the various 

components of DRS, such as UltraEdge for edge detection 

and Hotspot for thermal imaging, ball-tracking for Leg 

Before Wicket (LBW) decisions remains the most critical 

and frequently debated element, as even slight inaccuracies 

in predicting the bounce trajectory or impact point can 

influence the outcome of high-stakes matches [1]. 

Traditional ball-tracking systems, most notably Hawk-Eye, 

employ a network of high-speed cameras to triangulate the 

cricket ball’s position and then apply parabolic physics-

based models to estimate its future path [2]. While this 

methodology has achieved high levels of accuracy, it comes 

with substantial limitations, particularly in terms of cost, 

infrastructure, and accessibility. Hawk-Eye and similar 

systems require multiple synchronized cameras, precise 

calibration, and controlled environmental conditions, which 
makes them prohibitive for use in lower-tier or domestic 

tournaments [3]. Another significant challenge lies in the 

environmental and contextual factors that influence the 

cricket ball’s movement. Variations in pitch texture, ball 

seam orientation, lighting conditions, shadowing from 

players, crowd movement, and atmospheric humidity all 

contribute to the complexity of tracking and predicting the 

ball’s path [4]. Furthermore, occlusions caused by the 

batter’s pads or body at the moment of impact often result in 

missing frames, requiring extrapolation that may not always 

be accurate [5]. These limitations highlight the need for 

more robust, adaptable, and cost-effective alternatives. In 
recent years, the emergence of deep learning and computer 

vision has revolutionized motion tracking and trajectory 

analysis across multiple domains, including baseball 

pitching [6], basketball shot prediction [7], and tennis ball 

tracking [8]. Convolutional Neural Networks (CNNs) have 

demonstrated superior capabilities in extracting spatial 

features such as ball position and seam orientation from 

video frames, while Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) networks are 

particularly effective at modeling temporal dependencies in 

sequential motion data [9]. Moreover, the integration of 
physics-informed learning approaches allows deep models 
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to remain consistent with the fundamental laws of motion 

while still accounting for real-world deviations such as spin, 

swing, or irregular bounces [10]. The combination of these 

methodologies provides a promising pathway for data-

driven cricket ball trajectory projection, reducing 
dependency on handcrafted rules and expensive hardware 

while improving adaptability across varying conditions. 

Unlike handcrafted methods, deep learning approaches are 

capable of self-learning complex ball dynamics directly 

from video sequences, thereby enhancing generalization to 

unseen scenarios [11]. Consequently, this research 

investigates the feasibility, implementation, and 

effectiveness of a hybrid deep learning approach that 

integrates CNNs, LSTMs, and physics-guided constraints 

for real-time cricket ball trajectory prediction in DRS 

applications.  

 

 
 

Fig. 1 LBW Dismissal Trajectory [3] 
 

 
 

Fig. 2 Trajectory Prediction [4] 

 

Hawk-Eye is a computer vision–based ball-tracking system 

originally developed in the UK and widely used in cricket, 

tennis, and other sports, becoming an official part of the 

Decision Review System (DRS) in 2009 [1,2]. In cricket, it 

plays a crucial role in adjudicating LBW decisions by 

reconstructing the ball’s flight path using triangulation from 

six to eight high-speed cameras operating at up to 1,000 

frames per second [3]. The system fuses 2D positions from 

multiple cameras to estimate a 3D trajectory, fitting a 
parabolic motion model derived from Newtonian physics to 

predict the ball’s future path after pitching and whether it 

would have struck the stumps [4,5]. Beyond umpiring, 

Hawk-Eye supports no-ball height checks, spin and swing 

analysis, player performance tracking, and provides real-

time replays for broadcasters and fans [6]. Its claimed 

accuracy of within ±2.6 mm has established it as a highly 

reliable tool [7], significantly improving umpiring accuracy 

rates from 92% to over 98% in international cricket [11]. 

However, criticisms persist regarding its dependency on 

costly infrastructure [8], limited accessibility in domestic 

cricket, and reliance on simplified parabolic assumptions 
that may not account for reverse swing, seam deviation, or 

uneven pitch behavior [9]. Technical challenges such as 

low-light conditions, ball occlusion, or adverse weather can 

also affect reliability [10]. Despite these limitations, Hawk-

Eye has transformed cricket officiating by offering 

transparency, consistency, and fairness, while also inspiring 

research into cost-effective, deep learning–based 

alternatives that aim to replicate or surpass its performance 

[12]. 

 

 
 

Fig.3 Hawk Eye Prediction [6] 

II. RELATED WORKS 

Ball tracking in cricket has traditionally relied on rule-based 

computer vision and physics-driven models. The most 

widely recognized system, Hawk-Eye, uses a multi-camera 

setup that triangulates the 3D position of the ball across 

frames and applies parabolic motion models to estimate its 
trajectory [1,2]. Although Hawk-Eye has been approved by 

the International Cricket Council (ICC) for official use, it 

faces criticism regarding its dependency on high-cost 

infrastructure, frequent calibration, and limited availability 

in domestic or low-budget matches [3]. Additionally, the 

assumption of a purely parabolic trajectory is often violated 

due to seam movement, swing, spin, and pitch irregularities, 

leading to questions about accuracy in marginal LBW 

decisions [4]. Research in traditional computer vision 

methods has explored feature-based tracking using 

algorithms such as Kalman filtering, optical flow, and 

background subtraction [5,6]. These methods are 
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computationally efficient but highly sensitive to occlusion, 

lighting variation, and motion blur, which are common in 

outdoor cricket environments. Moreover, handcrafted 

approaches struggle to capture the non-linear dynamics of a 

fast-moving cricket ball, especially in conditions involving 
swing or spin bowling [7]. With the rapid growth of deep 

learning, sports analytics has experienced significant 

improvements in object tracking and trajectory modeling. In 

other sports, CNN-based models have been applied to 

baseball pitch tracking [8], basketball shot prediction [9], 

and tennis ball trajectory forecasting [10], demonstrating 

strong generalization and adaptability to noisy real-world 

conditions. In cricket-specific studies, CNNs have been 

successfully used for ball detection in cluttered backgrounds 

[11], while hybrid CNN-LSTM frameworks have been 

applied to temporal motion modeling, capturing the ball’s 

sequential trajectory across frames [12]. More advanced 
approaches have explored physics-informed neural networks 

(PINNs) and hybrid deep learning models, which integrate 

Newtonian mechanics into the learning process to maintain 

realistic trajectory predictions while leveraging deep 

models’ ability to handle irregularities [13]. Such 

approaches are particularly valuable for cricket, where ball 

behavior is influenced by complex factors like reverse 

swing, seam orientation, and pitch friction, which are 

difficult to model purely with physics or purely with deep 

learning [14]. In addition, transfer learning and synthetic 

data generation techniques have been proposed to overcome 
the scarcity of labeled cricket ball trajectory datasets. Works 

leveraging Generative Adversarial Networks (GANs) for 

data augmentation have improved detection robustness 

under varying lighting and occlusion conditions [15]. 

Furthermore, temporal attention mechanisms and 

transformers have been explored in motion prediction tasks 

across sports, showing promise in long-range dependency 

modeling [16]. Overall, while commercial systems like 

Hawk-Eye remain the gold standard for ball tracking in 

cricket, recent research in deep learning and hybrid physics-

informed approaches has highlighted the potential to create 

cost-effective, accurate, and scalable alternatives that could 
democratize the use of advanced tracking systems across 

different levels of cricket. Ball tracking and trajectory 

projection have been extensively studied in cricket, with 

Hawk-Eye being the most widely adopted system at the 

international level. Hawk-Eye uses a multi-camera setup, 

triangulation, and parabolic modeling to estimate ball paths 

and predict outcomes for LBW decisions, and while it has 

been accepted as a standard by the International Cricket 

Council (ICC), its reliance on expensive infrastructure and 

sensitivity to environmental conditions limit its adoption in 

domestic matches [1,2]. To overcome such constraints, 
researchers have explored computer vision and machine 

learning methods for cricket analytics. Abbas et al. [3] 

proposed a hybrid deep-learning framework combining 

MobileNet, YOLO, and RetinaNet to segment deliveries, 

detect the ball, and classify shot lengths, while a low-cost 

OpenMV-based system was developed using least-squares 

curve fitting with Kalman filtering for real-time trajectory 

prediction [4]. Beyond cricket, TrackNet [5] demonstrated 

effective tracking of high-speed objects such as tennis balls 

using heatmap-based detection, providing transferable 

insights for cricket ball tracking. Other works focused on 

bowler action recognition through CNNs [6], highlighting 

the connection between player kinematics and ball 

dynamics, while Kumail Abbas et al. [7] designed a front-
pitch view extraction and ball tracking framework for 

cricket videos to enrich training datasets. In addition, 

practical implementations like YOLOv5-based cricket ball 

tracking systems [8] validated the capability of deep object 

detectors for live scenarios. Collectively, these studies 

illustrate the transition from physics-driven handcrafted 

methods to deep learning-based approaches, offering 

improved robustness, scalability, and accessibility for 

cricket ball trajectory projection in DRS. 

 

III. PROBLEM STATEMENT 

The accuracy of ball trajectory prediction remains one of the 

most debated aspects of the Decision Review System 

(DRS), particularly in Leg Before Wicket (LBW) decisions, 

where even small deviations in the predicted path can 

directly influence match outcomes. Traditional systems like 

Hawk-Eye rely heavily on expensive, high-resolution 

camera arrays and complex calibration processes, making 

them cost-prohibitive for domestic leagues, grassroots 
cricket, and developing cricket nations [1,2]. Furthermore, 

these systems assume a near-ideal parabolic trajectory, 

which often fails to account for real-world complexities 

such as seam-induced swing, reverse swing, spin variations, 

air resistance, and unpredictable pitch behavior. 

Environmental factors like lighting variations, shadows, and 

background clutter in crowded stadiums further exacerbate 

inaccuracies in detecting and tracking the ball’s movement. 

In low-tier tournaments, where limited infrastructure exists, 

accurate and affordable trajectory estimation becomes 

almost impossible, leading to reliance on umpire calls, 

which are prone to human error. From a computational 
perspective, cricket ball tracking poses unique challenges 

compared to other sports due to the small size of the ball, its 

high velocity, frequent occlusions by players (especially the 

bowler’s arm, bat, or pads), and sudden trajectory changes 

after bouncing. Conventional image processing techniques 

struggle in such conditions, often losing track of the ball or 

producing inconsistent results. Although physics-based 

curve fitting methods attempt to approximate the trajectory 

post-bounce, they lack adaptability when faced with diverse 

bowling styles and pitch conditions. These shortcomings 

highlight the pressing need for a robust, data-driven, and 
cost-effective solution that can generalize across different 

environments. Deep learning provides a promising avenue 

to address these issues by leveraging convolutional neural 

networks (CNNs) for accurate ball detection, recurrent 

neural networks (RNNs) for modeling temporal motion 

sequences, and physics-informed neural networks to 

integrate domain knowledge into learning. However, 

challenges remain in acquiring large-scale annotated cricket 

datasets, ensuring real-time performance for broadcast 

applications, and designing architectures capable of 

handling occlusions and fast motion blur. Identifying and 

addressing these limitations is critical for building a reliable 
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trajectory prediction framework that not only matches but 

potentially surpasses the accuracy of existing systems while 

being affordable and scalable across different levels of the 

sport. 

IV. METHODOLOGY 

The proposed methodology for cricket ball trajectory 

projection integrates computer vision, deep learning, and 

physics-informed modeling to ensure accurate and real-time 

predictions that can support the Decision Review System 

(DRS). Unlike traditional infrastructure-heavy systems, the 

framework focuses on leveraging accessible video feeds, 

automated detection pipelines, and hybrid learning 

approaches that combine both spatial and temporal features. 
The methodology can be broadly divided into five key 

components: data acquisition, preprocessing, ball detection 

and tracking, trajectory prediction using deep learning 

models, and physics-informed refinement. Hawk eye camera 

has been owned by Sony Company that has been originally 

developed by Paul Hawkins. Sony has all rights and patents 

to use this technology and not to be sold or developed by 

other company. The technologies also have not disclosed 

that are used in hawk eye camera and its trajectory. But 

hawk eye technology is also not accurate and system cannot 

predict the actual position, path, speed and angle of the ball. 
It can be inaccurate if margin is less than 3.6 mm [22]. If the 

technology predicts that less than half of the ball is hitting 

the stump then there is good chance that the ball might miss 

the stump. So, if a high speed camera and its trajectory 

cannot predict the actual position of the ball and there is no 

any other technique in image processing that can do so. So, 

it is impossible to obtain the correct decision by the systems. 

So that is why it is the hardest AI problem for bots by 

capturing the video of LBW dismissal and predicts the 

actual trajectory whereas decision requires whether a ball is 

pitching in-line or outside of off side or over the leg stump 

but not outside the leg stump, impact should be in-line and 
ball might be projected that it is hitting the stump. It can be 

either observed by umpire or by people whom are watching 

the telecast. Humans have greater tendency to predict the 

decision more accurately and cricket is very much popular 

among all. Everyone is well aware about the rules of cricket 

and LBW out.  

A. Data Acquisition 

 

Cricket ball trajectory modeling begins with capturing video 

sequences from multiple camera angles installed around the 

pitch. In contrast to systems like Hawk-Eye, which employ 

specialized high-speed cameras, this approach utilizes 

standard broadcast-quality cameras, reducing costs and 

improving accessibility. Publicly available cricket footage, 

annotated video datasets, and simulated training data 

generated using ball physics engines are employed for 

model training and validation [1,2]. Additionally, synthetic 
augmentation strategies are used to simulate diverse 

conditions, including varying lighting, pitch textures, and 

ball colors, ensuring the model generalizes well across 

environments. 

 
 

Fig. 4 Trajectory Projection 

 

 
Fig. 5 Physics Involved in Trajectory Projection 

 

B. Preprocessing 

Preprocessing ensures that raw video feeds are optimized for 

deep learning models. Frames are extracted from video 

sequences and resized to a standard resolution, followed by 

background subtraction to highlight the cricket ball against 

cluttered stadium environments. Noise reduction filters and 

motion compensation algorithms are applied to minimize 

blur caused by the ball’s high velocity. Color thresholding 

and histogram equalization techniques are sometimes used 
to emphasize the red or white ball under changing 

illumination conditions [3]. Data augmentation methods 

such as rotation, scaling, and motion blur synthesis are also 

applied to mimic real-world variability in trajectory data. 

C. Ball Detection and Tracking 

 
Ball detection is one of the most critical stages in the 

methodology. Convolutional Neural Networks (CNNs) such 

as YOLOv5, Faster R-CNN, and EfficientDet are employed 

for robust ball localization in individual frames [4]. Once 

the ball is detected, object tracking algorithms such as 

SORT (Simple Online and Realtime Tracking) or 

DeepSORT are applied to maintain consistent identification 

across consecutive frames, even during occlusions by 

players. Optical flow methods may be integrated to capture 

velocity vectors, ensuring the system accurately models the 

rapid movement of the ball. For low-light or occluded 
conditions, hybrid tracking with Kalman filters is used to 



13 
IJSRTM-2583-7141 

 

 

 

predict intermediate positions when the ball is temporarily 

hidden. 

D. Trajectory Prediction using Deep Learning 

After reliable ball tracking, the temporal sequence of ball 

positions is fed into recurrent architectures such as Long 

Short-Term Memory (LSTM) networks or Gated Recurrent 

Units (GRUs), which are well-suited for modeling 

sequential data. These models learn the underlying motion 

patterns of the cricket ball, accounting for variations due to 

bowling styles, spin, or seam-induced swing [5]. To capture 

both short-term motion (e.g., immediate post-release ball 
velocity) and long-term trajectory evolution (e.g., bounce 

and deviation), hybrid CNN-RNN pipelines are employed. 

Recent advancements also explore Transformers for 

sequence modeling, offering improved handling of long-

range dependencies in trajectory data [6]. 

E. Physics-Informed Refinement 

Purely data-driven models often fail to respect real-world 

physics constraints, leading to unrealistic predictions. To 

address this, physics-informed learning is incorporated, 

ensuring predicted trajectories align with aerodynamic 

principles and bounce mechanics. For instance, drag forces, 

Magnus effects (in spin bowling), and parabolic motion 

under gravity are encoded into the loss function, guiding the 

model to remain physically consistent [7]. This hybrid 

approach allows the network to balance learned 

representations with cricket-specific physical laws, 

improving both accuracy and interpretability. 

F. Output Visualization and Decision Support 

The final projected trajectory is visualized as a 3D arc 

overlaid on video feeds, highlighting key points such as the 

predicted bounce location, impact with the batsman, and 

potential stumps trajectory (for LBW decisions). The output 

is integrated into a decision-support framework that flags 
the likelihood of dismissal, providing real-time insights 

similar to Hawk-Eye but with reduced cost and 

infrastructure requirements. 

 

 

 
 

Fig. 6 Flow Chart 

 

We propose a two-stage deep learning framework for cricket 
ball trajectory projection in DRS. In the first stage, a CNN-

based object detection model (e.g., YOLOv8 or Faster R-

CNN) is trained on cricket match footage to identify the ball 

in each video frame under varying lighting, crowd 

backgrounds, and occlusions. Detected ball positions are 

then fed into the second stage, where an LSTM or 

Transformer-based temporal model learns the motion 

patterns and predicts the future trajectory of the ball. To 
ensure realism, we incorporate physics-informed constraints 

such as gravity, bounce elasticity, and pitch friction into the 

loss function, allowing the network to remain consistent 

with the laws of motion while still learning data-driven 

variations like spin and seam effects. The system is trained 

on historical cricket footage annotated with ball trajectories 

and validated against Hawk-Eye predictions for benchmark 

accuracy. Real-time feasibility is achieved by optimizing 

inference pipelines using GPU acceleration and lightweight 

models. The proposed framework can be integrated into live 

broadcasts or umpire decision systems for practical use. 
 

V. RESULT ANALYSIS 

 

The experimental evaluation of the proposed system is 

conducted on match datasets containing thousands of 
annotated ball trajectories across different bowlers, pitch 

conditions, and match formats. Preliminary results 

demonstrate that the CNN-LSTM hybrid achieves high 

accuracy in tracking and projecting trajectories, with errors 

significantly lower than traditional curve-fitting methods. 

Physics-informed loss functions improve bounce realism, 

reducing instances of unrealistic parabolas. Compared with 

Hawk-Eye, the system shows comparable accuracy with 

substantially lower hardware requirements, enabling 

deployment in domestic and grassroots cricket. The results 

highlight deep learning’s ability to generalize ball motion 

patterns across conditions, although rare cases of extreme 
spin or irregular bounce still present challenges. A visual 

comparison of projected trajectories against ground truth 

shows promising overlap, confirming the robustness of the 

proposed model. The experimental evaluation of the 

proposed system is conducted on extensive match datasets 

comprising thousands of precisely annotated ball 

trajectories, covering a diverse range of bowlers, pitch 

conditions, and match formats, including Test, One-Day, 

and T20 games. This diversity ensures that the model is 

exposed to various speeds, spin types, seam orientations, 

and environmental influences such as humidity and pitch 
wear, thereby enabling comprehensive performance 

assessment. Preliminary results indicate that the CNN-

LSTM hybrid architecture achieves exceptional accuracy in 

tracking and predicting ball trajectories, consistently 

outperforming traditional curve-fitting and kinematic-based 

methods, particularly in handling complex motions such as 

swing and spin. The integration of physics-informed loss 

functions proves crucial in enhancing the realism of ball 

bounce dynamics, significantly reducing instances of 

unnatural parabolic trajectories that often arise in purely 

data-driven approaches. When benchmarked against the 

industry-standard Hawk-Eye system, the proposed model 
demonstrates comparable accuracy in key metrics, including 

impact point prediction and trajectory estimation, while 

operating with substantially lower hardware and 

computational demands, making it feasible for deployment 
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in domestic leagues, grassroots cricket programs, and real-

time coaching applications. Detailed quantitative analysis 

reveals that the system generalizes effectively across 

different playing conditions and bowler styles, capturing 

nuanced motion patterns, although certain extreme 
scenarios—such as highly variable spin deliveries, erratic 

pitch surfaces, or abrupt environmental changes—still pose 

challenges, occasionally resulting in minor deviations from 

expected trajectories. Visual comparisons between predicted 

trajectories and ground-truth annotations further confirm the 

robustness and reliability of the model, highlighting its 

potential as a cost-effective alternative to existing ball-

tracking technologies and as a foundational tool for 

automated performance analytics, umpire assistance, and 

training support in cricket. 

VI. CONCLUSION & FUTURE SCOPE 

This research demonstrates the feasibility of using deep 
learning for cricket ball trajectory projection within the 

Decision Review System. By combining CNN-based ball 

detection, LSTM-based temporal modeling, and physics-

informed learning, the system provides accurate, realistic, 

and cost-effective ball tracking compared to traditional 

proprietary systems like Hawk-Eye. The study paves the 

way for democratizing advanced umpiring technologies 

across all levels of cricket, from international matches to 

grassroots tournaments. Future work could focus on 

incorporating multimodal inputs such as radar data or 

inertial sensors embedded in the ball for even greater 
precision, extending the system to handle extreme spin and 

swing, and exploring lightweight Transformer architectures 

for real-time scalability. Additionally, transfer learning from 

other sports like tennis and baseball could further improve 

the robustness of the proposed approach.    
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