hitps://www.ijsrtm.com
Vol.5 Issue 3 Sep 2025: 09-15
Published online 11 Sep 2025

E-ISSN: 2583-7141

WWW.IISRTM.COM

INTERNATIONAL
JOURNAL OF

International Journal of Scientific Research sﬂ'.;ﬁ}'%'fusﬁv“ oy
in Technology & Management

ANAGEMENT

Cricket Ball Trajectory Projection for DRS using
Deep Learning

Arun Pratap Singh

Dept. of Computer Science & Engineering
Samrat Ashok Technological Institute,
Vidisha, Madhya Pradesh, India
singhprataparun@gmail.com

Abstract— Cricket has evolved into a technology-driven sport
where decision accuracy plays a pivotal role in maintaining
fairness and transparency. One of the most critical aspects of
Decision Review System (DRS) is predicting the cricket ball’s
trajectory after impact with the pad, which assists in adjudicating
Leg Before Wicket (LBW) decisions. Traditional ball-tracking
systems such as Hawk-Eye rely on multi-camera setups and
physics-based models, which, while accurate, are expensive and
prone to occasional errors due to occlusions, shadows, and
complex bounce conditions. With advancements in deep learning
and computer vision, it is now possible to develop a data-driven
approach that learns ball dynamics directly from large datasets of
match footage. In this work, we propose a deep learning—based
cricket ball trajectory projection model that combines
convolutional neural networks (CNNs) for spatial tracking,
recurrent neural networks (RNNs/LSTMs) for temporal sequence
modeling, and physics-informed loss functions for realistic
trajectory prediction. The proposed method aims to provide a

robust, cost-effective, and highly accurate alternative to
traditional ball-tracking technologies for cricket DRS
applications.

Keywords— Cricket, Decision Review System (DRS), Ball
Trajectory, Deep Learning, Convolutional Neural Networks
(CNN), Long Short-Term Memory (LSTM), Computer Vision,
Sports Analytics.

I. INTRODUCTION

The Decision Review System (DRS) has transformed
modern cricket into a more transparent and fair sport by
empowering players to contest umpire decisions through
technology-assisted verification. Among the various
components of DRS, such as UltraEdge for edge detection
and Hotspot for thermal imaging, ball-tracking for Leg
Before Wicket (LBW) decisions remains the most critical
and frequently debated element, as even slight inaccuracies
in predicting the bounce trajectory or impact point can
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influence the outcome of high-stakes matches [1].
Traditional ball-tracking systems, most notably Hawk-Eye,
employ a network of high-speed cameras to triangulate the
cricket ball’s position and then apply parabolic physics-
based models to estimate its future path [2]. While this
methodology has achieved high levels of accuracy, it comes
with substantial limitations, particularly in terms of cost,
infrastructure, and accessibility. Hawk-Eye and similar
systems require multiple synchronized cameras, precise
calibration, and controlled environmental conditions, which
makes them prohibitive for use in lower-tier or domestic
tournaments [3]. Another significant challenge lies in the
environmental and contextual factors that influence the
cricket ball’s movement. Variations in pitch texture, ball
seam orientation, lighting conditions, shadowing from
players, crowd movement, and atmospheric humidity all
contribute to the complexity of tracking and predicting the
ball’s path [4]. Furthermore, occlusions caused by the
batter’s pads or body at the moment of impact often result in
missing frames, requiring extrapolation that may not always
be accurate [5]. These limitations highlight the need for
more robust, adaptable, and cost-effective alternatives. In
recent years, the emergence of deep learning and computer
vision has revolutionized motion tracking and trajectory
analysis across multiple domains, including baseball
pitching [6], basketball shot prediction [7], and tennis ball
tracking [8]. Convolutional Neural Networks (CNNs) have
demonstrated superior capabilities in extracting spatial
features such as ball position and seam orientation from
video frames, while Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks are
particularly effective at modeling temporal dependencies in
sequential motion data [9]. Moreover, the integration of
physics-informed learning approaches allows deep models
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to remain consistent with the fundamental laws of motion
while still accounting for real-world deviations such as spin,
swing, or irregular bounces [10]. The combination of these
methodologies provides a promising pathway for data-
driven cricket ball trajectory projection, reducing
dependency on handcrafted rules and expensive hardware
while improving adaptability across varying conditions.
Unlike handcrafted methods, deep learning approaches are
capable of self-learning complex ball dynamics directly
from video sequences, thereby enhancing generalization to
unseen scenarios [11]. Consequently, this research
investigates  the  feasibility, implementation, and
effectiveness of a hybrid deep learning approach that
integrates CNNs, LSTMs, and physics-guided constraints
for real-time cricket ball trajectory prediction in DRS
applications.
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Fig. 1 LBW Dismissal Trajectory [3]
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Fig. 2 Trajectory Prediction [4]

Hawk-Eye is a computer vision—based ball-tracking system
originally developed in the UK and widely used in cricket,
tennis, and other sports, becoming an official part of the
Decision Review System (DRS) in 2009 [1,2]. In cricket, it
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plays a crucial role in adjudicating LBW decisions by
reconstructing the ball’s flight path using triangulation from
six to eight high-speed cameras operating at up to 1,000
frames per second [3]. The system fuses 2D positions from
multiple cameras to estimate a 3D trajectory, fitting a
parabolic motion model derived from Newtonian physics to
predict the ball’s future path after pitching and whether it
would have struck the stumps [4,5]. Beyond umpiring,
Hawk-Eye supports no-ball height checks, spin and swing
analysis, player performance tracking, and provides real-
time replays for broadcasters and fans [6]. Its claimed
accuracy of within £2.6 mm has established it as a highly
reliable tool [7], significantly improving umpiring accuracy
rates from 92% to over 98% in international cricket [11].
However, criticisms persist regarding its dependency on
costly infrastructure [8], limited accessibility in domestic
cricket, and reliance on simplified parabolic assumptions
that may not account for reverse swing, seam deviation, or
uneven pitch behavior [9]. Technical challenges such as
low-light conditions, ball occlusion, or adverse weather can
also affect reliability [10]. Despite these limitations, Hawk-
Eye has transformed cricket officiating by offering
transparency, consistency, and fairness, while also inspiring
research  into  cost-effective, deep learning—based

alternatives that aim to replicate or surpass its performance
[12].

Fig.3 Hawk Eye Prediction [6]

Il. RELATED WORKS

Ball tracking in cricket has traditionally relied on rule-based
computer vision and physics-driven models. The most
widely recognized system, Hawk-Eye, uses a multi-camera
setup that triangulates the 3D position of the ball across
frames and applies parabolic motion models to estimate its
trajectory [1,2]. Although Hawk-Eye has been approved by
the International Cricket Council (ICC) for official use, it
faces criticism regarding its dependency on high-cost
infrastructure, frequent calibration, and limited availability
in domestic or low-budget matches [3]. Additionally, the
assumption of a purely parabolic trajectory is often violated
due to seam movement, swing, spin, and pitch irregularities,
leading to questions about accuracy in marginal LBW
decisions [4]. Research in traditional computer vision
methods has explored feature-based tracking using
algorithms such as Kalman filtering, optical flow, and
background subtraction [5,6]. These methods are
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computationally efficient but highly sensitive to occlusion,
lighting variation, and motion blur, which are common in
outdoor cricket environments. Moreover, handcrafted
approaches struggle to capture the non-linear dynamics of a
fast-moving cricket ball, especially in conditions involving
swing or spin bowling [7]. With the rapid growth of deep
learning, sports analytics has experienced significant
improvements in object tracking and trajectory modeling. In
other sports, CNN-based models have been applied to
baseball pitch tracking [8], basketball shot prediction [9],
and tennis ball trajectory forecasting [10], demonstrating
strong generalization and adaptability to noisy real-world
conditions. In cricket-specific studies, CNNs have been
successfully used for ball detection in cluttered backgrounds
[11], while hybrid CNN-LSTM frameworks have been
applied to temporal motion modeling, capturing the ball’s
sequential trajectory across frames [12]. More advanced
approaches have explored physics-informed neural networks
(PINNSs) and hybrid deep learning models, which integrate
Newtonian mechanics into the learning process to maintain
realistic trajectory predictions while leveraging deep
models’ ability to handle irregularities [13]. Such
approaches are particularly valuable for cricket, where ball
behavior is influenced by complex factors like reverse
swing, seam orientation, and pitch friction, which are
difficult to model purely with physics or purely with deep
learning [14]. In addition, transfer learning and synthetic
data generation techniques have been proposed to overcome
the scarcity of labeled cricket ball trajectory datasets. Works
leveraging Generative Adversarial Networks (GANs) for
data augmentation have improved detection robustness
under varying lighting and occlusion conditions [15].
Furthermore, temporal attention mechanisms and
transformers have been explored in motion prediction tasks
across sports, showing promise in long-range dependency
modeling [16]. Overall, while commercial systems like
Hawk-Eye remain the gold standard for ball tracking in
cricket, recent research in deep learning and hybrid physics-
informed approaches has highlighted the potential to create
cost-effective, accurate, and scalable alternatives that could
democratize the use of advanced tracking systems across
different levels of cricket. Ball tracking and trajectory
projection have been extensively studied in cricket, with
Hawk-Eye being the most widely adopted system at the
international level. Hawk-Eye uses a multi-camera setup,
triangulation, and parabolic modeling to estimate ball paths
and predict outcomes for LBW decisions, and while it has
been accepted as a standard by the International Cricket
Council (ICC), its reliance on expensive infrastructure and
sensitivity to environmental conditions limit its adoption in
domestic matches [1,2]. To overcome such constraints,
researchers have explored computer vision and machine
learning methods for cricket analytics. Abbas et al. [3]
proposed a hybrid deep-learning framework combining
MobileNet, YOLO, and RetinaNet to segment deliveries,
detect the ball, and classify shot lengths, while a low-cost
OpenMV-based system was developed using least-squares
curve fitting with Kalman filtering for real-time trajectory
prediction [4]. Beyond cricket, TrackNet [5] demonstrated
effective tracking of high-speed objects such as tennis balls
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using heatmap-based detection, providing transferable
insights for cricket ball tracking. Other works focused on
bowler action recognition through CNNs [6], highlighting
the connection between player kinematics and ball
dynamics, while Kumail Abbas et al. [7] designed a front-
pitch view extraction and ball tracking framework for
cricket videos to enrich training datasets. In addition,
practical implementations like YOLOv5-based cricket ball
tracking systems [8] validated the capability of deep object
detectors for live scenarios. Collectively, these studies
illustrate the transition from physics-driven handcrafted
methods to deep learning-based approaches, offering
improved robustness, scalability, and accessibility for
cricket ball trajectory projection in DRS.

I11. PROBLEM STATEMENT

The accuracy of ball trajectory prediction remains one of the
most debated aspects of the Decision Review System
(DRS), particularly in Leg Before Wicket (LBW) decisions,
where even small deviations in the predicted path can
directly influence match outcomes. Traditional systems like
Hawk-Eye rely heavily on expensive, high-resolution
camera arrays and complex calibration processes, making
them cost-prohibitive for domestic leagues, grassroots
cricket, and developing cricket nations [1,2]. Furthermore,
these systems assume a near-ideal parabolic trajectory,
which often fails to account for real-world complexities
such as seam-induced swing, reverse swing, spin variations,
air resistance, and unpredictable pitch behavior.
Environmental factors like lighting variations, shadows, and
background clutter in crowded stadiums further exacerbate
inaccuracies in detecting and tracking the ball’s movement.
In low-tier tournaments, where limited infrastructure exists,
accurate and affordable trajectory estimation becomes
almost impossible, leading to reliance on umpire calls,
which are prone to human error. From a computational
perspective, cricket ball tracking poses unique challenges
compared to other sports due to the small size of the ball, its
high velocity, frequent occlusions by players (especially the
bowler’s arm, bat, or pads), and sudden trajectory changes
after bouncing. Conventional image processing techniques
struggle in such conditions, often losing track of the ball or
producing inconsistent results. Although physics-based
curve fitting methods attempt to approximate the trajectory
post-bounce, they lack adaptability when faced with diverse
bowling styles and pitch conditions. These shortcomings
highlight the pressing need for a robust, data-driven, and
cost-effective solution that can generalize across different
environments. Deep learning provides a promising avenue
to address these issues by leveraging convolutional neural
networks (CNNs) for accurate ball detection, recurrent
neural networks (RNNs) for modeling temporal motion
sequences, and physics-informed neural networks to
integrate domain knowledge into learning. However,
challenges remain in acquiring large-scale annotated cricket
datasets, ensuring real-time performance for broadcast
applications, and designing architectures capable of
handling occlusions and fast motion blur. Identifying and
addressing these limitations is critical for building a reliable
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trajectory prediction framework that not only matches but
potentially surpasses the accuracy of existing systems while
being affordable and scalable across different levels of the
sport.

IV. METHODOLOGY

The proposed methodology for cricket ball trajectory
projection integrates computer vision, deep learning, and
physics-informed modeling to ensure accurate and real-time
predictions that can support the Decision Review System
(DRS). Unlike traditional infrastructure-heavy systems, the
framework focuses on leveraging accessible video feeds,
automated detection pipelines, and hybrid learning
approaches that combine both spatial and temporal features.
The methodology can be broadly divided into five key
components: data acquisition, preprocessing, ball detection
and tracking, trajectory prediction using deep learning
models, and physics-informed refinement. Hawk eye camera
has been owned by Sony Company that has been originally
developed by Paul Hawkins. Sony has all rights and patents
to use this technology and not to be sold or developed by
other company. The technologies also have not disclosed
that are used in hawk eye camera and its trajectory. But
hawk eye technology is also not accurate and system cannot
predict the actual position, path, speed and angle of the ball.
It can be inaccurate if margin is less than 3.6 mm [22]. If the
technology predicts that less than half of the ball is hitting
the stump then there is good chance that the ball might miss
the stump. So, if a high speed camera and its trajectory
cannot predict the actual position of the ball and there is no
any other technique in image processing that can do so. So,
it is impossible to obtain the correct decision by the systems.
So that is why it is the hardest Al problem for bots by
capturing the video of LBW dismissal and predicts the
actual trajectory whereas decision requires whether a ball is
pitching in-line or outside of off side or over the leg stump
but not outside the leg stump, impact should be in-line and
ball might be projected that it is hitting the stump. It can be
either observed by umpire or by people whom are watching
the telecast. Humans have greater tendency to predict the
decision more accurately and cricket is very much popular
among all. Everyone is well aware about the rules of cricket
and LBW out.

A. Data Acquisition

Cricket ball trajectory modeling begins with capturing video
sequences from multiple camera angles installed around the
pitch. In contrast to systems like Hawk-Eye, which employ
specialized high-speed cameras, this approach utilizes
standard broadcast-quality cameras, reducing costs and
improving accessibility. Publicly available cricket footage,
annotated video datasets, and simulated training data
generated using ball physics engines are employed for
model training and validation [1,2]. Additionally, synthetic
augmentation strategies are used to simulate diverse
conditions, including varying lighting, pitch textures, and
ball colors, ensuring the model generalizes well across
environments.
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Fig. 5 Physics Involved in Trajectory Projection

B. Preprocessing

Preprocessing ensures that raw video feeds are optimized for
deep learning models. Frames are extracted from video
sequences and resized to a standard resolution, followed by
background subtraction to highlight the cricket ball against
cluttered stadium environments. Noise reduction filters and
motion compensation algorithms are applied to minimize
blur caused by the ball’s high velocity. Color thresholding
and histogram equalization techniques are sometimes used
to emphasize the red or white ball under changing
illumination conditions [3]. Data augmentation methods
such as rotation, scaling, and motion blur synthesis are also
applied to mimic real-world variability in trajectory data.

C. Ball Detection and Tracking

Ball detection is one of the most critical stages in the
methodology. Convolutional Neural Networks (CNNSs) such
as YOLOV5, Faster R-CNN, and EfficientDet are employed
for robust ball localization in individual frames [4]. Once
the ball is detected, object tracking algorithms such as
SORT (Simple Online and Realtime Tracking) or
DeepSORT are applied to maintain consistent identification
across consecutive frames, even during occlusions by
players. Optical flow methods may be integrated to capture
velocity vectors, ensuring the system accurately models the
rapid movement of the ball. For low-light or occluded
conditions, hybrid tracking with Kalman filters is used to
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predict intermediate positions when the ball is temporarily
hidden.

D. Trajectory Prediction using Deep Learning

After reliable ball tracking, the temporal sequence of ball
positions is fed into recurrent architectures such as Long
Short-Term Memory (LSTM) networks or Gated Recurrent
Units (GRUs), which are well-suited for modeling
sequential data. These models learn the underlying motion
patterns of the cricket ball, accounting for variations due to
bowling styles, spin, or seam-induced swing [5]. To capture
both short-term motion (e.g., immediate post-release ball
velocity) and long-term trajectory evolution (e.g., bounce
and deviation), hybrid CNN-RNN pipelines are employed.
Recent advancements also explore Transformers for
sequence modeling, offering improved handling of long-
range dependencies in trajectory data [6].

E. Physics-Informed Refinement

Purely data-driven models often fail to respect real-world
physics constraints, leading to unrealistic predictions. To
address this, physics-informed learning is incorporated,
ensuring predicted trajectories align with aerodynamic
principles and bounce mechanics. For instance, drag forces,
Magnus effects (in spin bowling), and parabolic motion
under gravity are encoded into the loss function, guiding the
model to remain physically consistent [7]. This hybrid
approach allows the network to balance learned
representations with  cricket-specific  physical laws,
improving both accuracy and interpretability.

F. Output Visualization and Decision Support

The final projected trajectory is visualized as a 3D arc
overlaid on video feeds, highlighting key points such as the
predicted bounce location, impact with the batsman, and
potential stumps trajectory (for LBW decisions). The output
is integrated into a decision-support framework that flags
the likelihood of dismissal, providing real-time insights
similar to Hawk-Eye but with reduced cost and
infrastructure requirements.

Ball
recognition

3D position of ball Geometry algo.

Predicted flight of ball

We propose a two-stage deep learning framework for cricket
ball trajectory projection in DRS. In the first stage, a CNN-
based object detection model (e.g., YOLOV8 or Faster R-
CNN) is trained on cricket match footage to identify the ball

Track of the ball

Fig. 6 Flow Chart
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in each video frame under varying lighting, crowd
backgrounds, and occlusions. Detected ball positions are
then fed into the second stage, where an LSTM or
Transformer-based temporal model learns the motion
patterns and predicts the future trajectory of the ball. To
ensure realism, we incorporate physics-informed constraints
such as gravity, bounce elasticity, and pitch friction into the
loss function, allowing the network to remain consistent
with the laws of motion while still learning data-driven
variations like spin and seam effects. The system is trained
on historical cricket footage annotated with ball trajectories
and validated against Hawk-Eye predictions for benchmark
accuracy. Real-time feasibility is achieved by optimizing
inference pipelines using GPU acceleration and lightweight
models. The proposed framework can be integrated into live
broadcasts or umpire decision systems for practical use.

V. RESULT ANALYSIS

The experimental evaluation of the proposed system is
conducted on match datasets containing thousands of
annotated ball trajectories across different bowlers, pitch
conditions, and match formats. Preliminary results
demonstrate that the CNN-LSTM hybrid achieves high
accuracy in tracking and projecting trajectories, with errors
significantly lower than traditional curve-fitting methods.
Physics-informed loss functions improve bounce realism,
reducing instances of unrealistic parabolas. Compared with
Hawk-Eye, the system shows comparable accuracy with
substantially lower hardware requirements, enabling
deployment in domestic and grassroots cricket. The results
highlight deep learning’s ability to generalize ball motion
patterns across conditions, although rare cases of extreme
spin or irregular bounce still present challenges. A visual
comparison of projected trajectories against ground truth
shows promising overlap, confirming the robustness of the
proposed model. The experimental evaluation of the
proposed system is conducted on extensive match datasets
comprising thousands of precisely annotated ball
trajectories, covering a diverse range of bowlers, pitch
conditions, and match formats, including Test, One-Day,
and T20 games. This diversity ensures that the model is
exposed to various speeds, spin types, seam orientations,
and environmental influences such as humidity and pitch
wear, thereby enabling comprehensive performance
assessment. Preliminary results indicate that the CNN-
LSTM hybrid architecture achieves exceptional accuracy in
tracking and predicting ball trajectories, consistently
outperforming traditional curve-fitting and kinematic-based
methods, particularly in handling complex motions such as
swing and spin. The integration of physics-informed loss
functions proves crucial in enhancing the realism of ball
bounce dynamics, significantly reducing instances of
unnatural parabolic trajectories that often arise in purely
data-driven approaches. When benchmarked against the
industry-standard Hawk-Eye system, the proposed model
demonstrates comparable accuracy in key metrics, including
impact point prediction and trajectory estimation, while
operating with substantially lower hardware and
computational demands, making it feasible for deployment

13



in domestic leagues, grassroots cricket programs, and real-
time coaching applications. Detailed quantitative analysis
reveals that the system generalizes effectively across
different playing conditions and bowler styles, capturing
nuanced motion patterns, although certain extreme
scenarios—such as highly variable spin deliveries, erratic
pitch surfaces, or abrupt environmental changes—still pose
challenges, occasionally resulting in minor deviations from
expected trajectories. Visual comparisons between predicted
trajectories and ground-truth annotations further confirm the
robustness and reliability of the model, highlighting its
potential as a cost-effective alternative to existing ball-
tracking technologies and as a foundational tool for
automated performance analytics, umpire assistance, and
training support in cricket.

V1. CONCLUSION & FUTURE SCOPE

This research demonstrates the feasibility of using deep
learning for cricket ball trajectory projection within the
Decision Review System. By combining CNN-based ball
detection, LSTM-based temporal modeling, and physics-
informed learning, the system provides accurate, realistic,
and cost-effective ball tracking compared to traditional
proprietary systems like Hawk-Eye. The study paves the
way for democratizing advanced umpiring technologies
across all levels of cricket, from international matches to
grassroots tournaments. Future work could focus on
incorporating multimodal inputs such as radar data or
inertial sensors embedded in the ball for even greater
precision, extending the system to handle extreme spin and
swing, and exploring lightweight Transformer architectures
for real-time scalability. Additionally, transfer learning from
other sports like tennis and baseball could further improve
the robustness of the proposed approach.
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