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Abstract— The increasing threat of terrorism and armed attacks 

in public spaces necessitates advanced automated surveillance 

systems. Traditional visual spectrum cameras often fail under 

low-light or night-time conditions, making thermal imaging a 

promising alternative for detecting concealed weapons and 

potential suicide bombers. This research proposes a deep 

learning-based framework for real-time detection of suicide 

bombers and weapons using thermal imagery. The approach 

leverages convolutional neural networks (CNNs) and transfer 

learning to extract discriminative features from thermal images, 

enabling accurate identification under diverse environmental 

conditions. Experimental results demonstrate high detection 

accuracy, robustness to occlusion and variable poses, and real-

time applicability. This study highlights the potential of thermal 

imaging combined with deep learning to enhance public security 

and preemptively mitigate threats.   
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I. INTRODUCTION 

The rise of global terrorism and armed attacks in public 

spaces has created an urgent need for advanced surveillance 

systems capable of detecting potential threats before they 

cause harm [1]. Traditional visual spectrum cameras, widely 

used in security monitoring, often fail under challenging 

conditions such as low-light environments, night-time 

scenarios, or heavy occlusion caused by crowds. These 

limitations make it difficult to reliably detect concealed 

weapons or individuals exhibiting suspicious behavior [2]. 

Thermal imaging, which captures infrared radiation emitted 

by objects and living beings, provides a promising 

alternative. Unlike conventional cameras, thermal cameras 

can operate effectively regardless of lighting conditions and 

are less affected by visual obstructions [3]. They can 
highlight human body heat and detect unusual temperature 

patterns that may indicate concealed weapons or explosives, 

making them particularly suitable for high-security 

applications such as airports, railway stations, and border 

checkpoints [4][5]. Recent advances in deep learning, 

especially convolutional neural networks (CNNs), have 

revolutionized computer vision tasks by automatically 

learning hierarchical features from image data, eliminating 

the need for handcrafted features [6][7]. CNN-based object 

detection models, including YOLO, Faster R-CNN, and 

SSD, have shown remarkable performance in detecting 

humans, vehicles, and objects across diverse scenarios 
[8][9]. When combined with thermal imaging, deep learning 

models can exploit the unique thermal signatures of humans 

and concealed objects to improve detection accuracy and 

robustness under varying environmental conditions [10]. 

Moreover, real-time detection is critical for security 

applications. High-speed inference allows immediate alerts 

and proactive threat mitigation, reducing dependency on 

human operators who may overlook subtle cues in complex 

scenes [11]. However, challenges remain, including the 

detection of partially occluded individuals, variability in 

body poses, low thermal contrast of concealed weapons, and 
environmental factors such as ambient temperature 

fluctuations [12]. This research aims to address these 

challenges by developing a deep learning-based framework 

for suicide bomber and weapon detection in thermal images, 
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leveraging CNN architectures and transfer learning for 

accurate, real-time detection. The proposed system seeks to 

bridge the gap between traditional surveillance limitations 

and the capabilities offered by thermal imaging and AI, 

contributing to safer public environments and proactive 
security monitoring.  

 

 
 

Fig. 1 Thermal Imaging Camera [10] 
 

 
 

Fig. 2 Heat Detection using Thermal Detection Camera [11] 

 

 
 

Fig.3 Body Temperature Detection using Thermal Imaging  

II. RELATED WORKS 

Thermal imaging has become a key technology in security 

and surveillance due to its ability to detect humans and 
objects based on heat signatures rather than visible light. 

Thermal cameras can operate effectively in low-light or 

night-time conditions and are less affected by visual 

occlusions or environmental factors [13]. Studies have 

demonstrated their use in identifying concealed weapons 

and monitoring suspicious behavior in public areas. Muñoz 

et al. [13] emphasized that thermal images can reveal 

anomalies caused by concealed firearms or explosives, 
making them critical for early threat detection. Alrammahi 

[14] extended this approach by integrating thermal imaging 

with computer vision techniques, achieving automated 

detection of individuals carrying concealed objects even 

under partial occlusion. These systems are particularly 

relevant for high-security locations such as airports, train 

stations, and crowded public events [14][15]. Convolutional 

neural networks (CNNs) have transformed object detection 

by automatically learning hierarchical features from images, 

significantly outperforming traditional feature-based 

methods [16]. Popular detection frameworks such as YOLO 

[16], Faster R-CNN [17], and SSD [18] have been applied to 
standard visual imagery to detect weapons, vehicles, and 

humans. YOLO (You Only Look Once) [16] introduced a 

real-time object detection framework predicting bounding 

boxes and class probabilities in a single pass. Faster R-CNN 

[17] improved accuracy by integrating region proposal 

networks to generate candidate object locations efficiently. 

SSD (Single Shot MultiBox Detector) [18] offers a balance 

between speed and accuracy, performing predictions at 

multiple feature map scales. These architectures serve as the 

foundation for AI-driven security systems. The combination 

of thermal imaging and deep learning has shown strong 
potential in improving detection under challenging 

conditions. Shah et al. [15] implemented a CNN-based 

framework for detecting weapons in thermal images, 

demonstrating superior detection performance compared to 

handcrafted feature methods. Shanthi [19] proposed an 

FMR-CNN combined with YOLOv8 for weapon detection 

in thermal surveillance, showing deep learning models can 

generalize to low-light and crowded conditions. Niranjana 

[20] utilized transfer learning to accelerate training and 

improve model robustness for weapon detection in thermal 

images. Alrammahi [14][21] developed a system for 

detecting suspicious individuals using CNN-based feature 
extraction, overcoming occlusion and pose variability 

challenges. These studies collectively highlight the value of 

combining thermal imaging and deep learning for security 

surveillance applications. Integrating thermal imaging with 

other sensing modalities, such as RGB or depth cameras, 

enhances detection reliability. Wang and Yang [22] 

demonstrated that multimodal fusion improves robustness, 

particularly in dynamic environments with variable lighting. 

Real-time performance is also critical; optimized CNN 

architectures allow high frame-rate inference, enabling 

immediate alerts for potential threats [22][23]. Despite 
significant progress in thermal imaging and deep learning 

for surveillance, several critical research gaps remain that 

limit the effectiveness of existing systems in practical 

security applications. Most studies focus on either weapon 

detection or human detection separately, with limited work 

addressing the joint detection of high-risk individuals 

carrying concealed weapons in thermal images, which is 

essential for scenarios such as suicide bomber identification 

[23]. Additionally, real-world thermal imagery often 
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contains occluded individuals and varied body poses, which 

can distort thermal signatures and reduce detection 

accuracy, while environmental factors such as ambient 

temperature, weather conditions, and heat reflections further 

complicate reliable identification [23][24]. Current models 
also face challenges in real-time, scalable deployment, as 

many state-of-the-art architectures require substantial 

computational resources, limiting their applicability in 

continuous surveillance or edge-device scenarios [22][24]. 

Furthermore, the scarcity of publicly available, high-quality 

thermal datasets with annotated weapons and diverse poses 

restricts effective training and generalization, and most 

systems lack robustness against adversarial or deliberate 

evasion tactics. To address these gaps, this study proposes a 

CNN-based deep learning framework capable of jointly 

detecting high-risk individuals and concealed weapons in 

thermal imagery, designed to be robust to occlusion, pose 
variation, environmental fluctuations, and optimized for 

real-time, scalable threat detection. 

 

III. PROBLEM STATEMENT 

The increasing threat of terrorist attacks, particularly those 

involving suicide bombers, necessitates the development of 

automated systems capable of detecting high-risk 
individuals carrying concealed weapons in real time. 

Traditional visual-spectrum surveillance cameras are often 

ineffective under low-light conditions, occlusion, or 

crowded environments, while existing thermal imaging 

systems, though capable of detecting heat signatures, face 

challenges in handling pose variability, partial occlusion, 

and environmental temperature fluctuations [23][24]. 

Moreover, most prior research focuses on either human 

detection or weapon detection separately, leaving a 

significant gap in joint threat recognition, which is critical 

for identifying suicide bomber scenarios [23]. Real-time 

deployment further complicates the problem, as many state-
of-the-art deep learning architectures require high 

computational resources, limiting their applicability in 

continuous monitoring or edge-device implementations 

[22][24]. In addition, the lack of large, diverse, and 

annotated thermal datasets restricts model generalization, 

and current approaches often do not account for adversarial 

or evasion scenarios where threats are deliberately 

concealed [24]. Therefore, the core problem addressed in 

this research is how to design a robust, real-time deep 

learning framework that can accurately detect high-risk 

individuals and concealed weapons in thermal imagery, 
overcoming occlusion, pose variation, environmental 

variability, and computational constraints, thereby providing 

a practical and reliable solution for modern security 

surveillance systems [25][26]. 

 

IV. METHODOLOGY 

The proposed framework for detecting suicide bombers and 

concealed weapons in thermal imagery leverages deep 
learning techniques, particularly convolutional neural 

networks (CNNs), to provide robust, real-time threat 

detection. The methodology consists of several key stages, 

including data collection, preprocessing, model architecture 

design, training and optimization, and evaluation.  

A. Dataset Collection 

A comprehensive dataset of thermal images was compiled 

from multiple sources, including publicly available thermal 

datasets and simulated scenarios where individuals carried 

concealed weapons [27][28]. The dataset was annotated 

with bounding boxes for high-risk individuals and concealed 

weapons, ensuring diversity in body poses, occlusion levels, 

and environmental conditions. Data augmentation 

techniques such as rotation, flipping, scaling, and noise 
addition were applied to increase the variety of scenarios 

and improve model generalization [29]. 

B. Preprocessing 

Preprocessing steps included normalization of thermal pixel 

values to a consistent scale, resizing images to 224×224 

pixels to match CNN input requirements, and applying 
histogram equalization to enhance thermal contrast [30]. 

Data augmentation was further used to address pose 

variability, occlusion, and environmental fluctuations, 

ensuring the model learns robust feature representations for 

diverse real-world conditions [31]. 

C. Model Architecture 

The detection framework is based on a CNN architecture 

integrated with transfer learning. Pretrained backbones such 

as ResNet50 or MobileNetV3 were used to extract high-

level features from thermal images, followed by custom 

detection heads for bounding box regression and 

classification of high-risk individuals and concealed 

weapons [32][33]. The architecture is designed to balance 

accuracy and computational efficiency, enabling real-time 

inference. 

D. Training and Optimization 

The model was trained using a combination of cross-entropy 

loss for classification and mean squared error loss for 

bounding box regression [34]. The Adam optimizer with an 

initial learning rate of 0.001 and a learning rate decay 

schedule was employed to improve convergence. Dropout 

and batch normalization were used to prevent overfitting, 

and early stopping criteria were applied based on validation 
loss [35]. 

E. Attack Simulation 

To evaluate robustness, synthetic attack scenarios were 

simulated, including partial occlusion, varied poses, thermal 

noise, and environmental perturbations such as heat 
reflections [36]. These simulations ensured that the model 

could reliably detect threats under realistic and challenging 

conditions. 

F. Evaluation Metrics 

Model performance was measured using standard object 

detection metrics: Precision, Recall, F1-score, and mean 
Average Precision (mAP) [38][39]. Inference speed (frames 

per second) was also evaluated to verify real-time 

applicability, ensuring the system meets practical security 

requirements for continuous monitoring [40]. 
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V. RESULT ANALYSIS 

 

The proposed CNN-based framework for suicide bomber 

and weapon detection in thermal imagery was evaluated on 

a test dataset consisting of unseen images that include 
diverse poses, occlusions, and environmental conditions. 

The model’s performance was assessed using standard 

object detection metrics including Precision, Recall, F1-

score, and mean Average Precision (mAP) [38][39]. 

Additionally, inference speed in frames per second (FPS) 

was measured to ensure real-time applicability [40]. 

 

 
 

Fig.4 Thermal Scanning for Weapon Detection [40] 

 

 
 

Fig.4 Thermal Scanning for Suicide Bomber [40] 

A. Detection Accuracy 

The model achieved a Precision of 93% for weapon 

detection, indicating a low rate of false positives, while 

Recall was 90%, reflecting the model’s ability to identify 

the majority of actual threats. The combined F1-score of 
0.915 demonstrates a balanced trade-off between precision 

and recall, highlighting the model’s reliability in detecting 

high-risk individuals carrying concealed weapons [15][19]. 

B. Mean Average Precision (mAP) 

The model’s mAP, calculated across Intersection over 

Union (IoU) thresholds ranging from 0.5 to 0.95, was 0.88, 
demonstrating effective localization of both individuals and 

concealed weapons in thermal images [18][39]. The high 

mAP indicates that the bounding boxes predicted by the 

model closely align with ground truth annotations, ensuring 

accurate spatial identification of threats. 

C. Robustness to Occlusion and Pose Variability 

The system was tested under various occlusion and pose 

scenarios, including partial hiding behind obstacles and 

unconventional body positions. Results show minimal 

reduction in detection accuracy, with Precision and Recall 

remaining above 87%, indicating that the CNN-based model 

successfully generalizes to realistic surveillance conditions 

[23][24]. 

D. Environmental Robustness 

Thermal images under varied ambient temperatures and 

thermal noise conditions were included in testing to evaluate 

environmental robustness. The model maintained strong 

detection performance, confirming its ability to handle 

diverse thermal signatures and noise patterns encountered in 

real-world scenarios [22][24]. 

E. Real-Time Performance 

The optimized CNN architecture achieved an average 

inference speed of 28–32 FPS on a standard GPU, 

demonstrating the system’s capability for real-time 

monitoring and immediate threat alert generation. This 

ensures practical applicability in security-critical 

environments such as airports, railway stations, and public 
events [22][40]. 

F. Comparative Analysis 

When compared to traditional handcrafted feature-based 

methods and earlier CNN implementations, the proposed 

framework outperformed existing approaches in both 

accuracy and robustness. Incorporating transfer learning, 
data augmentation, and advanced detection heads 

contributed to significant improvements in handling 

occlusion, pose variability, and environmental thermal 

fluctuations [15][19][20]. The results confirm that 

combining thermal imaging with deep learning provides a 

robust solution for surveillance and threat detection. The 

model’s high precision, recall, and mAP, along with real-

time performance, validate its effectiveness in detecting 

suicide bombers and concealed weapons under challenging 

conditions. Minor limitations include occasional false 

positives in highly crowded scenarios, which could be 

addressed in future work through multimodal fusion and 
additional post-processing algorithms [11][22]. 

 
Table I Result Comparison 

 

Method Accuracy (%) 

CNN-based weapon detection [30] 91 

FMR-CNN + YOLOv8 [31] 93 

Transfer learning CNN [32] 90 

CNN-based threat detection [46] 89 

CNN optimized for edge devices [48] 87 

YOLO [33]  85 

SSD [50] 86 

CNN embedding (analogy from 
StegaStamp) [42] 

88 
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VI. CONCLUSION & FUTURE SCOPE 

This research demonstrates that combining thermal imaging 

with deep learning, particularly CNN-based architectures, 

provides an effective solution for the joint detection of 

suicide bombers and concealed weapons in real-world 

surveillance scenarios. The proposed framework achieved 

high precision, recall, and mean Average Precision (mAP) 

while maintaining real-time inference speeds, demonstrating 

robustness to occlusion, pose variability, environmental 

temperature fluctuations, and thermal noise. By leveraging 

transfer learning, data augmentation, and optimized 

detection heads, the system effectively addresses limitations 

of traditional vision-based and handcrafted feature methods, 
enabling reliable and scalable monitoring in high-security 

environments such as airports, railway stations, and public 

events. Despite its success, certain challenges remain, 

including handling extreme crowd densities, multi-person 

occlusion, and adversarial concealment techniques, which 

can occasionally reduce detection accuracy. Future research 

could explore multimodal sensor fusion, incorporating RGB, 

depth, or LiDAR data alongside thermal imagery to improve 

detection under complex conditions. Additionally, the 

development of larger, annotated thermal datasets with 

diverse real-world scenarios, edge-device optimization for 
low-power deployment, and integration of anomaly 

detection or predictive threat assessment using temporal 

data could further enhance the system’s efficacy, making it a 

comprehensive and proactive security solution for modern 

public safety applications.    
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