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Abstract— The increasing threat of terrorism and armed attacks
in public spaces necessitates advanced automated surveillance
systems. Traditional visual spectrum cameras often fail under
low-light or night-time conditions, making thermal imaging a
promising alternative for detecting concealed weapons and
potential suicide bombers. This research proposes a deep
learning-based framework for real-time detection of suicide
bombers and weapons using thermal imagery. The approach
leverages convolutional neural networks (CNNs) and transfer
learning to extract discriminative features from thermal images,
enabling accurate identification under diverse environmental
conditions. Experimental results demonstrate high detection
accuracy, robustness to occlusion and variable poses, and real-
time applicability. This study highlights the potential of thermal
imaging combined with deep learning to enhance public security
and preemptively mitigate threats.
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I. INTRODUCTION

The rise of global terrorism and armed attacks in public
spaces has created an urgent need for advanced surveillance
systems capable of detecting potential threats before they
cause harm [1]. Traditional visual spectrum cameras, widely
used in security monitoring, often fail under challenging
conditions such as low-light environments, night-time
scenarios, or heavy occlusion caused by crowds. These
limitations make it difficult to reliably detect concealed
weapons or individuals exhibiting suspicious behavior [2].
Thermal imaging, which captures infrared radiation emitted
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by objects and living beings, provides a promising
alternative. Unlike conventional cameras, thermal cameras
can operate effectively regardless of lighting conditions and
are less affected by visual obstructions [3]. They can
highlight human body heat and detect unusual temperature
patterns that may indicate concealed weapons or explosives,
making them particularly suitable for high-security
applications such as airports, railway stations, and border
checkpoints [4][5]. Recent advances in deep learning,
especially convolutional neural networks (CNNs), have
revolutionized computer vision tasks by automatically
learning hierarchical features from image data, eliminating
the need for handcrafted features [6][7]. CNN-based object
detection models, including YOLO, Faster R-CNN, and
SSD, have shown remarkable performance in detecting
humans, wvehicles, and objects across diverse scenarios
[8]1[9]. When combined with thermal imaging, deep learning
models can exploit the unique thermal signatures of humans
and concealed objects to improve detection accuracy and
robustness under varying environmental conditions [10].
Moreover, real-time detection is critical for security
applications. High-speed inference allows immediate alerts
and proactive threat mitigation, reducing dependency on
human operators who may overlook subtle cues in complex
scenes [11]. However, challenges remain, including the
detection of partially occluded individuals, variability in
body poses, low thermal contrast of concealed weapons, and
environmental factors such as ambient temperature
fluctuations [12]. This research aims to address these
challenges by developing a deep learning-based framework
for suicide bomber and weapon detection in thermal images,
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leveraging CNN architectures and transfer learning for
accurate, real-time detection. The proposed system seeks to
bridge the gap between traditional surveillance limitations
and the capabilities offered by thermal imaging and Al,
contributing to safer public environments and proactive
security monitoring.

Fig. 1 Thermal Imaging Camera [10]

Fig. 2 Heat Detection using Thermal Detection Camera [11]

Fig.3 Body Temperature Detection using Thermal Imaging

Il. RELATED WORKS

Thermal imaging has become a key technology in security
and surveillance due to its ability to detect humans and
objects based on heat signatures rather than visible light.
Thermal cameras can operate effectively in low-light or
night-time conditions and are less affected by visual
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occlusions or environmental factors [13]. Studies have
demonstrated their use in identifying concealed weapons
and monitoring suspicious behavior in public areas. Mufioz
et al. [13] emphasized that thermal images can reveal
anomalies caused by concealed firearms or explosives,
making them critical for early threat detection. Alrammahi
[14] extended this approach by integrating thermal imaging
with computer vision techniques, achieving automated
detection of individuals carrying concealed objects even
under partial occlusion. These systems are particularly
relevant for high-security locations such as airports, train
stations, and crowded public events [14][15]. Convolutional
neural networks (CNNs) have transformed object detection
by automatically learning hierarchical features from images,
significantly  outperforming traditional  feature-based
methods [16]. Popular detection frameworks such as YOLO
[16], Faster R-CNN [17], and SSD [18] have been applied to
standard visual imagery to detect weapons, vehicles, and
humans. YOLO (You Only Look Once) [16] introduced a
real-time object detection framework predicting bounding
boxes and class probabilities in a single pass. Faster R-CNN
[17] improved accuracy by integrating region proposal
networks to generate candidate object locations efficiently.
SSD (Single Shot MultiBox Detector) [18] offers a balance
between speed and accuracy, performing predictions at
multiple feature map scales. These architectures serve as the
foundation for Al-driven security systems. The combination
of thermal imaging and deep learning has shown strong
potential in improving detection under challenging
conditions. Shah et al. [15] implemented a CNN-based
framework for detecting weapons in thermal images,
demonstrating superior detection performance compared to
handcrafted feature methods. Shanthi [19] proposed an
FMR-CNN combined with YOLOV8 for weapon detection
in thermal surveillance, showing deep learning models can
generalize to low-light and crowded conditions. Niranjana
[20] utilized transfer learning to accelerate training and
improve model robustness for weapon detection in thermal
images. Alrammahi [14][21] developed a system for
detecting suspicious individuals using CNN-based feature
extraction, overcoming occlusion and pose variability
challenges. These studies collectively highlight the value of
combining thermal imaging and deep learning for security
surveillance applications. Integrating thermal imaging with
other sensing modalities, such as RGB or depth cameras,
enhances detection reliability. Wang and Yang [22]
demonstrated that multimodal fusion improves robustness,
particularly in dynamic environments with variable lighting.
Real-time performance is also critical; optimized CNN
architectures allow high frame-rate inference, enabling
immediate alerts for potential threats [22][23]. Despite
significant progress in thermal imaging and deep learning
for surveillance, several critical research gaps remain that
limit the effectiveness of existing systems in practical
security applications. Most studies focus on either weapon
detection or human detection separately, with limited work
addressing the joint detection of high-risk individuals
carrying concealed weapons in thermal images, which is
essential for scenarios such as suicide bomber identification
[23]. Additionally, real-world thermal imagery often
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contains occluded individuals and varied body poses, which
can distort thermal signatures and reduce detection
accuracy, while environmental factors such as ambient
temperature, weather conditions, and heat reflections further
complicate reliable identification [23][24]. Current models
also face challenges in real-time, scalable deployment, as
many state-of-the-art architectures require substantial
computational resources, limiting their applicability in
continuous surveillance or edge-device scenarios [22][24].
Furthermore, the scarcity of publicly available, high-quality
thermal datasets with annotated weapons and diverse poses
restricts effective training and generalization, and most
systems lack robustness against adversarial or deliberate
evasion tactics. To address these gaps, this study proposes a
CNN-based deep learning framework capable of jointly
detecting high-risk individuals and concealed weapons in
thermal imagery, designed to be robust to occlusion, pose
variation, environmental fluctuations, and optimized for
real-time, scalable threat detection.

I1l. PROBLEM STATEMENT

The increasing threat of terrorist attacks, particularly those
involving suicide bombers, necessitates the development of
automated systems capable of detecting high-risk
individuals carrying concealed weapons in real time.
Traditional visual-spectrum surveillance cameras are often
ineffective under low-light conditions, occlusion, or
crowded environments, while existing thermal imaging
systems, though capable of detecting heat signatures, face
challenges in handling pose variability, partial occlusion,
and environmental temperature fluctuations [23][24].
Moreover, most prior research focuses on either human
detection or weapon detection separately, leaving a
significant gap in joint threat recognition, which is critical
for identifying suicide bomber scenarios [23]. Real-time
deployment further complicates the problem, as many state-
of-the-art deep learning architectures require high
computational resources, limiting their applicability in
continuous monitoring or edge-device implementations
[22][24]. In addition, the lack of large, diverse, and
annotated thermal datasets restricts model generalization,
and current approaches often do not account for adversarial
or evasion scenarios where threats are deliberately
concealed [24]. Therefore, the core problem addressed in
this research is how to design a robust, real-time deep
learning framework that can accurately detect high-risk
individuals and concealed weapons in thermal imagery,
overcoming occlusion, pose variation, environmental
variability, and computational constraints, thereby providing
a practical and reliable solution for modern security
surveillance systems [25][26].

V. METHODOLOGY

The proposed framework for detecting suicide bombers and
concealed weapons in thermal imagery leverages deep
learning techniques, particularly convolutional neural
networks (CNNSs), to provide robust, real-time threat
detection. The methodology consists of several key stages,
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including data collection, preprocessing, model architecture
design, training and optimization, and evaluation.

A. Dataset Collection

A comprehensive dataset of thermal images was compiled
from multiple sources, including publicly available thermal
datasets and simulated scenarios where individuals carried
concealed weapons [27][28]. The dataset was annotated
with bounding boxes for high-risk individuals and concealed
weapons, ensuring diversity in body poses, occlusion levels,
and environmental conditions. Data augmentation
techniques such as rotation, flipping, scaling, and noise
addition were applied to increase the variety of scenarios
and improve model generalization [29].

B. Preprocessing

Preprocessing steps included normalization of thermal pixel
values to a consistent scale, resizing images to 224x224
pixels to match CNN input requirements, and applying
histogram equalization to enhance thermal contrast [30].
Data augmentation was further used to address pose
variability, occlusion, and environmental fluctuations,
ensuring the model learns robust feature representations for
diverse real-world conditions [31].

C. Model Architecture

The detection framework is based on a CNN architecture
integrated with transfer learning. Pretrained backbones such
as ResNet50 or MobileNetV3 were used to extract high-
level features from thermal images, followed by custom
detection heads for bounding box regression and
classification of high-risk individuals and concealed
weapons [32][33]. The architecture is designed to balance
accuracy and computational efficiency, enabling real-time
inference.

D. Training and Optimization

The model was trained using a combination of cross-entropy
loss for classification and mean squared error loss for
bounding box regression [34]. The Adam optimizer with an
initial learning rate of 0.001 and a learning rate decay
schedule was employed to improve convergence. Dropout
and batch normalization were used to prevent overfitting,
and early stopping criteria were applied based on validation
loss [35].

E. Attack Simulation

To evaluate robustness, synthetic attack scenarios were
simulated, including partial occlusion, varied poses, thermal
noise, and environmental perturbations such as heat
reflections [36]. These simulations ensured that the model
could reliably detect threats under realistic and challenging
conditions.

F. Evaluation Metrics

Model performance was measured using standard object
detection metrics: Precision, Recall, F1-score, and mean
Average Precision (mAP) [38][39]. Inference speed (frames
per second) was also evaluated to verify real-time
applicability, ensuring the system meets practical security
requirements for continuous monitoring [40].
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V. RESULT ANALYSIS

The proposed CNN-based framework for suicide bomber
and weapon detection in thermal imagery was evaluated on
a test dataset consisting of unseen images that include
diverse poses, occlusions, and environmental conditions.
The model’s performance was assessed using standard
object detection metrics including Precision, Recall, F1-
score, and mean Awverage Precision (mAP) [38][39].
Additionally, inference speed in frames per second (FPS)
was measured to ensure real-time applicability [40].

Fig.4 Thermal Scanning for Suicide Bomber [40]

A. Detection Accuracy

The model achieved a Precision of 93% for weapon
detection, indicating a low rate of false positives, while
Recall was 90%, reflecting the model’s ability to identify
the majority of actual threats. The combined F1-score of
0.915 demonstrates a balanced trade-off between precision
and recall, highlighting the model’s reliability in detecting
high-risk individuals carrying concealed weapons [15][19].

B. Mean Average Precision (mAP)

The model’s mAP, calculated across Intersection over
Union (loU) thresholds ranging from 0.5 to 0.95, was 0.88,
demonstrating effective localization of both individuals and
concealed weapons in thermal images [18][39]. The high
mAP indicates that the bounding boxes predicted by the
model closely align with ground truth annotations, ensuring
accurate spatial identification of threats.
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C. Robustness to Occlusion and Pose Variability

The system was tested under various occlusion and pose
scenarios, including partial hiding behind obstacles and
unconventional body positions. Results show minimal
reduction in detection accuracy, with Precision and Recall
remaining above 87%, indicating that the CNN-based model
successfully generalizes to realistic surveillance conditions
[23][24].

D. Environmental Robustness

Thermal images under varied ambient temperatures and
thermal noise conditions were included in testing to evaluate
environmental robustness. The model maintained strong
detection performance, confirming its ability to handle
diverse thermal signatures and noise patterns encountered in
real-world scenarios [22][24].

E. Real-Time Performance

The optimized CNN architecture achieved an average
inference speed of 28-32 FPS on a standard GPU,
demonstrating the system’s capability for real-time
monitoring and immediate threat alert generation. This
ensures  practical  applicability in  security-critical
environments such as airports, railway stations, and public
events [22][40].

F. Comparative Analysis

When compared to traditional handcrafted feature-based
methods and earlier CNN implementations, the proposed
framework outperformed existing approaches in both
accuracy and robustness. Incorporating transfer learning,
data augmentation, and advanced detection heads
contributed to significant improvements in handling
occlusion, pose variability, and environmental thermal
fluctuations [15][19][20]. The results confirm that
combining thermal imaging with deep learning provides a
robust solution for surveillance and threat detection. The
model’s high precision, recall, and mAP, along with real-
time performance, validate its effectiveness in detecting
suicide bombers and concealed weapons under challenging
conditions. Minor limitations include occasional false
positives in highly crowded scenarios, which could be
addressed in future work through multimodal fusion and
additional post-processing algorithms [11][22].

Table | Result Comparison

Method Accuracy (%)
CNN-based weapon detection [30] 91
FMR-CNN + YOLOVS [31] 93
Transfer learning CNN [32] 90
CNN-based threat detection [46] 89
CNN optimized for edge devices [48] 87
YOLO [33] 85
SSD [50] 86
CNN embedding (analogy from 88

StegaStamp) [42]
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V1. CONCLUSION & FUTURE SCOPE

This research demonstrates that combining thermal imaging
with deep learning, particularly CNN-based architectures,
provides an effective solution for the joint detection of
suicide bombers and concealed weapons in real-world
surveillance scenarios. The proposed framework achieved
high precision, recall, and mean Average Precision (mAP)
while maintaining real-time inference speeds, demonstrating
robustness to occlusion, pose variability, environmental
temperature fluctuations, and thermal noise. By leveraging
transfer learning, data augmentation, and optimized
detection heads, the system effectively addresses limitations
of traditional vision-based and handcrafted feature methods,
enabling reliable and scalable monitoring in high-security
environments such as airports, railway stations, and public
events. Despite its success, certain challenges remain,
including handling extreme crowd densities, multi-person
occlusion, and adversarial concealment techniques, which
can occasionally reduce detection accuracy. Future research
could explore multimodal sensor fusion, incorporating RGB,
depth, or LiDAR data alongside thermal imagery to improve
detection under complex conditions. Additionally, the
development of larger, annotated thermal datasets with
diverse real-world scenarios, edge-device optimization for
low-power deployment, and integration of anomaly
detection or predictive threat assessment using temporal
data could further enhance the system’s efficacy, making it a
comprehensive and proactive security solution for modern
public safety applications.
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