

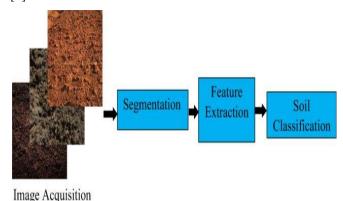
International Journal of Scientific Research in Technology & Management

E-ISSN: 2583-7141

A Comprehensive Review on Automatic Soil Classification in Image Processing

Abhishek Dubey
Dept. of Computer Science & Engineering
Oriental Institute of Science & Technology
Bhopal, Madhya Pradesh, India
dabhishek911@gmail.com

Abstract— Soil classification is the segmentation approach based on its features such as textural, geographical, chemical and physical. Since the soil stores are endlessly fluctuated component in this world, it has not been found imaginable to make a general arrangement of soil classification for separating soils into different gatherings and subgroups based on their significant list of properties. Be that as it may, helpful frameworks in view of a couple of recorded properties that have been formulated. A portion of these frameworks are in such normal use by workers in different fields including soils that the architect should have essentially overall information on them. Simultaneously it is fundamental for remember that no framework can satisfactorily portray soil of all designing purposes. Soil classification is the detachment of soil into classes or gatherings each having comparative qualities and possibly comparable conduct. A classification for the end goal of designing should be founded principally on mechanical properties, for example penetrability, firmness, strength. The class to which a soil has a place can be utilized in its portrayal. The intention of this paper is to review various earlier implemented systems that classify the soil on the basis of textural properties. Many of the systems are based on machine learning approaches where they use deep neural networks. But the problem with the deep neural network is that if utilized network has been not used then weight of the network might be bulky that increase the size of the network and system get slower to execute and training and testing may take long time.


Keywords— Soil Classification, Soil Identification, Image Processing, Textural Data, Soil Analysis, Feature Extraction, Clustering.

I. Introduction

Soil is the loose surface material that covers most land. It includes inorganic particles and regular matter. Soil offers the essential assistance to plants used in agribusiness and is also their wellspring of water and enhancements. Soils vacillate amazingly in their manufactured and real properties. Cycles like sifting, suffering and microbial development

Shrikant Zade
Dept. of Computer Science & Engineering
Oriental Institute of Science & Technology
Bhopal, Madhya Pradesh, India
cdzshrikant28@gmail.com

combines to make a whole extent of different soil types. Each type has explicit characteristics and shortcomings for cultivating creation. The actual qualities of soils incorporate surface, shading, profundity, structure, porosity-the space between the particles and stone substance. Good soil structure adds to soil and establish prosperity allowing water and air advancement through the soil profile. Soil stores water for plant advancement and supports machine and animal traffic. While a couple of soils are regularly best coordinated over others, a few real credits of soils can be changed with adequate organization. Screen the real ascribes of soil to appreciate soil condition. Ensure that organization practices are not adding to the root of the soil. A delineation of this is outrageous traffic causing compaction and diminishing the proportion of macropores, or spaces between the sums, therefore reducing the proportion of air and water into and through the soil. The blend of mineral segments (rock, sand, sediment and soil particles) and normal matter division give soil its surface. Surface grades depend on the proportion of earth, sand, residue and regular matter present [1].

age i requisition

Fig. 1. Soil Classification Steps [2]

Fig. 1 shows the traditional method of extracting textures or features of the soil and step including in classification. Image processing is a field where object can be classified as per its appearance or features on it. Soil can be classified by using image processing tools with high accuracy. Image is a two dimensional signal with having X and Y coordinates. The coordinates represent the location of the pixel of textures present in the image. There are several approaches have been adopted to identify or classify the soil whether it is clay, clay peat, slit, sandy and many more [3]. There is a necessity of computer vision based soil classification procedures which will help ranchers in the field through which they can deal with the time. This paper discusses different computer vision based soil classification rehearses partitioned into two streams. First is image handling and computer vision based soil classification approaches which incorporate the regular image handling calculations and techniques to group soil utilizing various highlights like surface, shading, and molecule size. Second is deep learning and machine learning based soil classification draws near, for example, CNN, which yields classifying edge outcomes. Deep learning applications for the most part lessen the reliance on spatial-structure plans and preprocessing procedures by working with the start to finish process. This paper likewise presents a few information bases made by the specialists as per the target of the review. Information bases are made under various ecological and enlightenment conditions, utilizing various apparatuses like computerized cameras. Likewise, assessment measurements momentarily examined to design a few evaluated measures for separation. This audit fills in as a short manual for new analysts in the field of soil classification, it gives essential agreement and general information on the advanced feature explores, notwithstanding capable scientists thinking about a few powerful patterns for future work [3].

II. LITERATURE REVIEW

A. Related Works

This section is intended to review various researches and their results and identify certain common problem findings with them. System's precision is often significant because precise classification and identification can help the agribusiness organizations and individuals. However, many examinations have assessed the precision and consistency of the soil classification using various techniques. This examination starts by evaluating the verifiable advancement of soil classification science. The verifiable audit contextualizes the wordings and the speculations of soil development factors, which supported soil classification frameworks. This paper is intended to review some research papers on soil classification and analyze the limitations of implemented techniques by their parameters. In the age of digital world, it is beneficial to obtain the information from image without any hassle. Shraddha Shivhare et al. [4] implemented a system which is based on Gabor Wavelet and Support Vector Machine. Author uses conventional support vector machine for classifying the soil images. System also uses Gabor Wavelet for extracting the texture of the image and process accordingly. System targeted 7 categories of soil and classified with each 11 trails along

with 500 iterations. But conventional SVM is not effective the non-linear data that may produce incorrect recognitions.

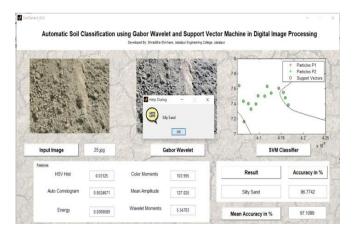


Fig. 2. System Interface [4]

Vijay E V et al. [5] implemented a system that is based on Support Vector Machine. The image processing ideas are demonstrated as effective techniques for mechanizing this errand. Various calculations exist for soil classification yet soil classification with high exactness and with less consumption is testing process. In this paper, the computerization is proceeded according to the system. Here seven unique classes of soil were thought of and these soils were handled. Furthermore the exactness is additionally determined. In this paper, it is seen that Modified Support Vector Machine can work in a productive way with better precision level. MATLAB programming functioned as a productive apparatus for the improvement of proposed classification strategy and this can be utilized for additional advancement of on location ongoing soil classification utilizing autonomous point of interaction.

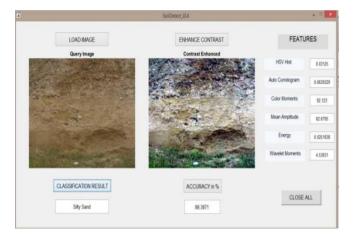


Fig. 3. System GUI [5]

R. Pittman, B. Hu et al. [6] introduced a system that is based on LIDAR data. The natural covariates of CHM and hole division, each got from LiDAR information, were of high factor significance when contrasted with other ecological covariates for soil surface classification. CHM had the most noteworthy variable significance of 7.77 % IncMSE among a bunch of 104 covariates, and hole part was as yet in the

top indicators with 2.35 % IncMSE for variable significance. The extents of the variable significance values expanded for CHM and hole part for the diminished arrangement of covariates considered significant for the soil surface displaying. Covariates connecting with vegetation cover had the most elevated variable significance, which prove vegetation to be a principle soil arrangement factor for the review region. In this manner, CHM is a significant pointer for soil surface as CHM connects with the vegetation shelter structure. RF and SVM Radial methodologies with the consideration of natural covariates got from LiDAR information for indicators, produced models for soil surface classification with expanded exactnesses when contrasted with models from equivalent investigations. The exactness accuracy surpassed 0.7, and Cohen's kappa scores surpassed 0.5 which demonstrated moderate to significant understanding. DSM forecast maps for both the RF and SVM Radial models gave practically identical outcomes for soil surface classifications that are predictable with assumptions for the review region in light of land cover type. Of interest for future examinations is to decide if natural covariates got from LiDAR information, for example, CHM and hole part, have high factor significance when applied for other DSM classification displaying, for example, for calcareous substrate response to corrosive testing or dampness system classification. Hement Kumar et al. [7] implemented a system that is based on conventional SVM. The features are fundamental for the laymen farmers considering the way that these are important in developing and can be see with next to no issue. The proposed application has more highlights then the current framework like supplements of soil, recommended crop list and proposed urea. These highlights are vital for the laymen ranchers on the grounds that these are helpful in cultivating and can be see without any problem. The soil is the only one layer of the earth surface which is fundamental for the developing, planting and officer administration. The developing area is decreasing bit by bit a direct result of industrialization and people advancement of any country. It is vital to use consistent procedure for developing by using latest development like data mining, computerized thinking, progressed image dealing with to make market revenue in balance.

Fig. 4. HSV & Linear SVM based Soil Classification [7]

That is the explanation, a couple of researchers have proposed a couple of strategies to bunch soil and suggest

crop. In any case, they assembled the soil similar to salt, fair and acidic. These sorts of classifications are not important for farmer since it can't be seen by farmers with next to no issue. A. V. Deorankar et al. [8] performed an analytical approach for soil classification in the field of machine learning. This paper studies the various calculations and techniques related with the land classification and in this paper, it has been endeavored to recognize a strategy for identifying the supplement level in the soil. Natural matters assume a fundamental part in soil wellbeing. Employments of natural matters are great in séance of expanding waterholding capacity and to give major, minor, and micronutrient to the plant. The great classifier should deal with variety in the land. It ought to be various leveled for profound classification with most extreme exactness. The degree of supplements will be useful for ranchers for the further suggestion of manures. Fluffy Logic with a standard based framework is profoundly adjusted and can perform more precise aftereffects of classification. Then again, twofold classification is a fundamental and quick methodology, be that as it may, its precision is low when contrasted with the fluffy rationale framework. B. Bhattacharya et al. [9] proposed a procedure for computerizing this classification framework is presented. At first, a division estimation is made and applied to area the intentional signs. Likewise, the striking features of these areas are taken out using limit energy strategy. Taking into account the purposeful data and eliminated features to designate classes to the sections classifiers are created; they use Choice Trees, ANN and Support Vector Machines. The method was attempted in requesting sub-surface soil using assessed data from Cone Infiltration Testing and adequate results were gained. Pramudyana Agus Harlianto et al. [10] proposed a Machine learning computation that can be applied for automating soil type classification. This paper takes a gander at a couple of machine learning estimations for organizing soil type. Computations that incorporate support vector machine (SVM), neural organization, decision tree, and unsophisticated bayesian are proposed and studied for this classification. Soil dataset is taken from the veritable data. Amusement is constrained by using Rapid Miner Studio. The show saw is the precision. The result shows that SVM, with the usage of straight limit bit, beats the others computations. The SVM best precision is 82.35%. P.Bhargavi et al. [11] proposed a utilization of a genetic programming system for classification of decision tree of Soil data to orchestrate soil surface. The data base contains assessments of soil profile data. They have applied GATree for creating classification decision tree. GATree is a decision tree producer that relies upon Hereditary Calculations (GAs). In this paper soil plan is performed using GATree, which is a decision tree designer that relies upon Hereditary Calculations (GAs). The idea behind it is genuinely clear anyway astonishing. Rather than using estimation estimations that are uneven towards unequivocal trees we use a more versatile, overall estimation of tree quality that endeavor to smooth out precision and size. GATree offers a few extraordinary features not to be found in some other tree inducers while at the same time it can make better results for a few inconvenient issues. GATree

uses ARFF as its standard source plan. An ARFF record is a direct book report that depicts the issue cases and its attributes. By pressing the image choice tree button it can envision and cross an extreme decision tree. The estimations tab on the key screen gives a couple of graphs of the headway cycle. Those outlines license us to follow the headway cycle dynamically and track down potential issues and examples. For example, when the Normal Wellness of the general population will overall be identical to the Wellness of the best Genome then there is a bad situation for extra overhauls. A response here could be to endeavor with more ages or more prominent people size. The settings tab on the rule screen grants us to control each piece of the headway cycle. There are two sorts of settings; Fundamental settings and advanced settings depending upon their handiness and multifaceted nature. Underneath you can find an explanation of the offered decisions for Soil dataset. The idea behind it is genuinely fundamental yet inconceivable. Rather than using estimation estimations that are uneven towards unequivocal trees authors use a more versatile, overall estimation of tree quality that endeavor to smooth out accuracy and size. GATree offers a few intriguing features not to be found in some other tree inducers while at the same time it can make better results for a few irksome issues. Preliminary outcomes are presented which address the presentation of making most ideal decision tree for gathering soil surface for soil enlightening assortment. Sk Al Zaminur Rahman et al. [12] proposed a model for expecting soil plan and giving suitable reap yield thought to that specific soil.

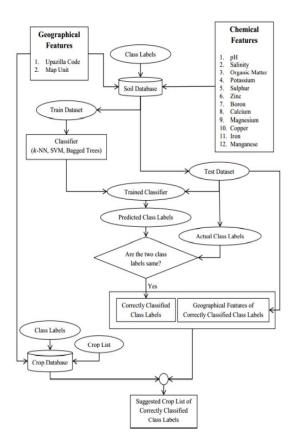


Fig. 5. Proposed System Architecture [12]

The assessment has been done on soil datasets of six upazillas of Khulna area. The model has been attempted by applying different sorts of machine learning estimation. Stashed tree and K-NN shows incredible precision anyway among all of the classifiers, SVM has given the most significant accuracy in soil classification. The proposed model is legitimized by a fittingly made dataset and machine learning computations. The soil classification accuracy and besides the idea of yields for express soil are more fitting than many existing methods. M van Rooyen, N Luwes et al. [13] proposed classification of dynamic soils is a basic part in primary planning adventures. There is a necessity for more exact techniques for classification. This paper surveys a handmade machine vision classification system. From composing review, Stokes' regulation was recognized as a likely approach for the machine vision system. Stirs up's states that the estimation squared of a particle is clearly comparative with the settling velocity of the atom in a fluid. This paper evaluates in the event that a power histogram can be used as a marker of settling speed. While building the computerized soil classification structure using machine vision it is basic to control the lighting whatever amount as could be anticipated. The image getting box that was fabricated mirrors as negligible light as possible inside the situation where the test tests are found. The case also hinders outside light from intruding with the test. This hinders clashing light in the space of interest and is indispensable for solid test results. Care should be taken while mixing the soil so it is done as dependably as could be anticipated. To assemble a computerized Soil Classification Framework using machine vision, one would require controls tests for arrangement. Most importantly, a pure sand test was used and analyzed by the machine vision structure. Tests were mixed by adding definitively 50 g of soil to 900 ml of water. Testing was done at room temperature (23oC to 25oC) since temperature moreover expects a section in the accuracy of the tests. Before testing, the mix was predominantly mixed for around 1 second to guarantee it was consistently spread all through the chamber. The genuine assessment was done using a camera mounted at a proper distance with scenery enlightenment through the chamber, getting the whole atom settlement measure. A greyscale Basler splendid association camera was used for picture getting. By using greyscale, a more significant standard can be achieved as significant standard concealing cameras are impressively more expensive. The camera was mounted at a proper distance and point inside a remarkably fabricated light check box to restrict upheaval from outside sources. Srunitha.k et al. [14] proposed the classifications of non-sandy soils are better arranged with SVM (through WEKA). Basically all misclassified objects are given off near the piece line. Near as far as possible Estimations spotted as consistently boisterous and therefore can be reasoned that the organization of classifiers was extraordinary. With more data and soil science space unequivocal stunts, the potential for applying machine sorting out some way to soil property assumption would no doubt be supported. It can achieve a 95% precision rate for requesting. Parallel classifier is used to direct on the off chance that the soil sort is sandy. Support vector machine

(SVM) do the gathering of the non-sandy soil. The soil sorts are better portrayed here (with WEKA). Larger piece of the misclassified objects are moved near the segment line. Near as far as possible Estimations spotted as habitually uproarious and thusly can be presumed that the establishment of the classifiers was surprising.

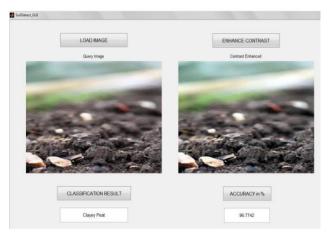


Fig. 6. System's GUI [14]

Classification of soil is the breaking down to soil sets to explicit social occasion having a like characteristics and equivalent propensities. For all intents and purposes all that countries do thing exchanging, in which those countries conveying higher cultivating thing are particularly depend upon the soil credits. Therefore, soil ascribes recognizing evidence and classification is particularly huge. ID of the soil type helps with avoiding green thing sum hardship. A classification for planning reason should be established transcendently on mechanical properties. This paper explains support vector machine based classification of the soil types. Soil classification consolidates steps like picture getting, picture pre dealing with, feature extraction and classification. The surface features of soil pictures are removed using the low pass channel, Gabor channel and quantization concealing procedure. plentifulness, HSV histogram, Standard deviation are taken as the quantifiable limits.

Table No. I Problem Findings & Comparison

Author/s	Method	Findings	Accuracy
Shraddh a Shivha re et al. [4]	Gabor & SVM	Based on Linear Classifier Not effective for Non-Linear Data	97.12 %
Vijay E V et al. [5]	Modified- SVM	Based on Modified Linear Class ifier Not effective for Non-Linear Data	96.77 %
R. Pittm an, B. H u et al. [6]	LIDAR	Based on Light Detection Less effective for texture analysis	79.50 %
M van R ooyen, N Luwes [13]	SVM	Implementing custom software to implement a complete machine vision solution is unnecessary and can take month to complete.	-

Srunitha. k et al. [14]	HSV-SVM	Based on HSV color model Recognition using color is not effective for better precision before classification	95.00 %
Shravani V1, Uda y Kiran S2 [15]	Naïve Bayes	System uses Naive Bayes classifier for classifying soil but Naive Bayes is suitable to linear data but not suitable for non lin ear data.	92.93 %

III. CONCLUSION

The paper reviewed previously proposed systems their methodologies. Many researches are related to the SVM, Modified SVM, GATree, Naïve Bayes, HSV-SVM and many more. Yet, there is no proper model for texture extraction, rather than that it tends to be accomplished through examples alongside different pre-processing models. The extraction of information from considered and requested soil maps by needed end-clients have extended of late in light of the tremendous cost related with the classification and illustrating of such soils by the singular clients, and is moreover a dreary cooperation. In specific models, the end clients don't appreciate the procedures that were used in making the aides, the botches related with it and the normal furthest reaches of utilization. Data throughout the years has shown that evaluations contained in a few soil maps are not astounding considering the way that they are typically established on limited data and confined information. To perceive that soil maps are not freed from bungles, the weakness in the assessments may be tended to with botch restricts that depict the precision of the aide. Of late further evolved procedures have been given high precision of accuracy, including the usage of phony associations, far away recognizing photogrammetric techniques, got together with geographic information system (GIS). Regardless, research has shown that, traditional soil survey endures as the most well known kind of soil arranging and stock. The need subsequently arises to arrange and revive instead of neglect the standard soil survey methodology for present day inclusion techniques. The framework can be improved in future by carrying out it with various methods and channels, which might secure great precision and insignificant deception rate. Since according to the ideal framework, precision is a significant boundary, for that reason exactness of framework can be upgraded in future with various methods or channels. System requires better classification and pre-processing model through better accuracy can be achieved and proper investigation can be performed.

REFERENCES

- Duarte, Isabel M. R. and Rodrigues, Carlos M. G. and Pinho, Classification of Soils", Encyclopedia of Engineering Geology, 2018, Springer International Publishing, pages 125-13, doi:10.1007/978-3-319-73568-9_52.
- [2] Srivastava, Pallavi & Shukla, Aasheesh & Bansal, Atul. (2021). A comprehensive review on soil classification using deep learning and computer vision techniques. Multimedia Tools and Applications. 80. 10.1007/s11042-021-10544-5.
- [3] H. K. Sharma and S. Kumar, "Soil Classification & Characterization Using Image Processing," 2018 Second International Conference on

- Computing Methodologies and Communication (ICCMC), 2018, pp. 885-890, doi: 10.1109/ICCMC.2018.8488103.
- [4] S. Shivhare and K. Cecil, "Automatic Soil Classification by using Gabor Wavelet & Support Vector Machine in Digital Image Processing," 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), 2021, pp. 1738-1743, doi: 10.1109/ICIRCA51532.2021.9544897.
- [5] Vijay E V, Navya Ch, Abdul Shabana Begum, Rajaneesh D, Mahesh Babu B, Soil Classification Using Modified Support Vector Machine, International Journal of Research in Advent Technology, Vol.8, No.9, September 2020.
- [6] R. Pittman and B. Hu, "Improvement of Soil Texture Classification with LiDAR Data," IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 5018-5021, doi: 10.1109/IGARSS39084.2020.9324152.
- [7] H. K. Sharma and S. Kumar, "Soil Classification & Characterization Using Image Processing," 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), 2018, pp. 885-890, doi: 10.1109/ICCMC.2018.8488103.
- [8] A. V. Deorankar and A. A. Rohankar, "An Analytical Approach for Soil and Land Classification System using Image Processing," 2020 5th International Conference on Communication and Electronics Systems (ICCES), 2020, pp. 1416-1420, doi: 10.1109/ICCES48766.2020.9137952.
- [9] B. Bhattacharya, D.P. Solomatine, Machine learning in soil classification, Neural Networks, Volume 19, Issue 2, 2006, Pages 186-195
- [10] P. A. Harlianto, T. B. Adji and N. A. Setiawan, "Comparison of machine learning algorithms for soil type classification," 2017 3rd International Conference on Science and Technology - Computer (ICST), 2017, pp. 7-10, doi: 10.1109/ICSTC.2017.8011843.
- [11] Bhargavi, Peyakunta & Singaraju, Jyothi. (2010). Soil Classification Using GATree. International Journal of Computer Science and Information Technology. 2. 184-191. 10.5121/ijcsit.2010.2514.
- [12] S. A. Z. Rahman, K. Chandra Mitra and S. M. Mohidul Islam, "Soil Classification Using Machine Learning Methods and Crop Suggestion Based on Soil Series," 2018 21st International Conference of Computer and Information Technology (ICCIT), 2018, pp. 1-4, doi: 10.1109/ICCITECHN.2018.8631943.
- [13] M. van Rooyen, N. Luwes and E. Theron, "Automated soil classification and identification using machine vision," 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), 2017, pp. 249-252, doi: 10.1109/RoboMech.2017.8261156.
- [14] K. Srunitha and S. Padmavathi, "Performance of SVM classifier for image based soil classification," 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 2016, pp. 411-415, doi: 10.1109/SCOPES.2016.7955863.
- [15] Shravani V1, Uday Kiran S2, Yashaswini J S3, and Priyanka D, Soil Classification And Crop Suggestion Using Machine Learning, International Research Journal of Engineering and Technology (IRJET) Volume: 07 Issue: 06 | June 2020.
- [16] H. K. Sharma and S. Kumar, "Soil Classification & Characterization Using Image Processing," 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), 2018, pp. 885-890, doi: 10.1109/ICCMC.2018.8488103.
- [17] A. Bonini Neto, C. dos Santos Batista Bonini, B. Santos Bisi, A. Rodrigues dos Reis and L. F. Sommaggio Coletta, "Artificial Neural Network for Classification and Analysis of Degraded Soils," in IEEE Latin America Transactions, vol. 15, no. 3, pp. 503-509, March 2017, doi: 10.1109/TLA.2017.7867601.
- [18] Koresh, Mr H. James Deva. "Analysis of Soil Nutrients based on Potential Productivity Tests with Balanced Minerals for Maize-Chickpea Crop." Journal of Electronics 3, no. 01 (2021): 23-35.
- [19] Joe, Mr C. Vijesh, and Jennifer S. Raj. "Location-based Orientation Context Dependent Recommender System for Users." Journal of trends in Computer Science and Smart technology (TCSST) 3, no. 01 (2021): 14-23
- [20] G. Huluka and R. Miller, "Particle size determination by hydrometer method.," Southern Cooperative Series Bulletin 419, pp. 180-184., 2014.

- [21] D. L. Rowell, Soil science: Methods & applications., Routledge, 2014.
- [22] P. R. Day, "Particle fractionation and particle-size analysis.," Methods of soil analysis. Part 1, pp. 545-567, 1965.
- [23] W. W. Rubey, "Settling velocity of gravel, sand, and silt particles.," American Journal of Science, vol. 148, pp. 325-338, 1933.
- [24] L. Beuselinck, "Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method.," Catena, pp. 193-208, 1998.
- [25] P. K. Monye, P. R. Stott and E. Theron, "Assessment of reliability of the hydrometer by examination of sediment.," in Proceedings of the 1st Southern African Geotechnical Conference., Sun City, South Africa., 5-6 May 2016.
- [26] B. G. Batchelor, Machine Vision Handbook, Springer, 2017.
- [27] P. R. Stott and E. Theron, "Shortcomings in the estimation of clay fraction by the hydrometer.," Journal of the South African Institution of Civil Engineering, vol. 58, pp. 14-24, 2016.
- [28] V. Sudharsan and B. Yamuna "Support Vector Machine based Decoding Algorithm for BCH Codes" Journal of Telecommunication and Information Technology 2016.
- [29] B. Bhattacharya, and D.P. Solomatine "An algorithm for clustering and classification of series data with constraint of contiguity", Proc. 3T"d nt. Conf: on Hybrid and Intelligent Systems, Melboume, Australia, 2003, pp. 489-498.
- [30] Unmesha Sreeveni.U .B, Shiju Sathyadevan "ADBF Integratable Machine Learning Algorithms –Map reduce Implementation" Second International Symposium on computer vision and the Internet(VisionNet'15).
- [31] A.Coerts, Analysis of Static Cone Penetration Test Data for Subsurface Modelling - A Methodology (PhD Thesis), Utrecht University, The Netherlands, 1996.
- [32] L.F. Costa, and R.M. Cesar, Shape Analysis and Classification: Theory and Practice, Boca Raton, Florida: CRC Press, 2001.
- [33] S. Haykin, Neural Networks: A Comprehensive Foundation, New Jersey: Prentice Hall, 1999.
- [34] Gordon, A.D. "A survey of constrained classification", Computational Statistics & Data Analysis, vol. 21, pp. 17-29, 1996.
- [35] D.M. Hawkins, and D.F. Merriam, "Optimal zonation of digitized sequential data", Mathematical Geology, vol. 5, pp. 389-395, 1973.
- [36] C.H. Juang, X.H. Huang, R.D. Holtz, and J.W. Chen, "Determining relative density of sands from CPT using fuzzy sets", J. of Geotechnical Engineering, vol. 122(1), pp. 1-6, 1996. G.P. Huijzer, Quantitative Penetrostratigraphic Classification (PhDThesis), Free University of Amsterdam, The Netherlands, 1992.
- [37] M.G. Kerzner, Image Processing in Well Log Analysis, Dordrecht, The Netherlands: Reidel Pub., 1986.
- [38] J. K. Kumar, M. Konno, and N. Yasuda, "Sub surface soil-geology interpolation using fizzy neural network", J. of Geotechnical and Geoenvironmental Engineering, ASCE, vol. 126(7), pp. 632-639, 2000.
- [39] L.J. van Vliet, and P.W. Verbeeck, "Curvature and bending energy in digitised 2D and 3D images", in: K.A. Hogda, B. Braathen and K.Heia (Eds), Proc. 8" Scandinavian Confon Image Analysis, Norway,1993, vol. 2, pp. 1403-1410.
- [40] R. Webster, "Optimally partitioning soil transects", Journal of Soil Science, vol. 29, pp. 388402, 1978.
- [41] I.H. Witten, and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufimann, 2000.
- [42] H.J.T. Weerts, Complex Confining Layers, Utrecht University, The Netherlands, 1996.
- [43] I.T. Young, and T.W. Calvert, "An analysis technique for biological shape", Information and Control, vol. 25, pp 357-370, 1974.
- [44] P. R. Stott and E. Theron, "Some shortcomings in the standard South African testing procedures for assessing heaving clay," Journal of the South African Institution of Civil Engineering, vol. 57 No 2, no. June 2015, pp. 36-44, 2015.
- [45] Z. Zhang, and M. T. Tumay, "Statistical to fuzzy approach toward CPT soil classification", J of Geotechnical and Geo environmental Engineering, vol. 125(3), pp. 179-186, 1999.

- [46] F. Ellis, "The Determinants of Rural Livelihood Diversification in Developing Countries," Agric. Econ., vol. 51, no. 2, pp. 289 2008. 2. H. Nagendra, D. K. Munroe, and J. Southworth, "From pattern to process: landscape fragmentation International Journal of Trend in Scientific Research and Development (IJTSRD).
- [47] Chandan and Ritula Thakur. "An Intelligent Model for Indian Soil Classification using various Machine Learning Techniques." (2018).