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Abstract— Object removal from images, often referred to as 

image inpainting or content-aware editing, is a fundamental and 

challenging task in computer vision that aims to seamlessly 

reconstruct missing or undesired regions in images while 

preserving visual realism, semantic coherence, and structural 

integrity. This problem has garnered significant attention due to 

its wide range of practical applications, including professional 

photography, augmented and virtual reality, video post-

processing, medical image artifact removal, and surveillance, 

where accurate restoration of occluded or corrupted areas is 

critical. Early approaches to this problem relied primarily on 

traditional signal-processing techniques and patch-based 

methods, such as diffusion-based propagation or exemplar-based 

patch matching, which achieved notable successes for small 

missing regions and repetitive textures but struggled with large 

holes, complex textures, and maintaining global semantic 

consistency. The advent of deep learning has transformed the 

field by introducing data-driven models capable of learning 

complex patterns and contextual relationships from large 

datasets. Convolutional neural networks (CNNs) provided the 

first major leap, enabling end-to-end learning of hierarchical 

image representations that could generate plausible fills 

conditioned on the visible context. Building upon this, generative 

adversarial networks (GANs) further improved perceptual 

realism by employing adversarial training, where a generator 

synthesizes missing regions and a discriminator evaluates 

authenticity, leading to sharper and more coherent inpainting 

results.   
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Learning, GANs, Transformers, Diffusion Models, Computer 
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I. INTRODUCTION 

The ability to remove unwanted objects from images 
while preserving visual realism, semantic coherence, and 
structural integrity has long been a central goal in computer 
vision and computer graphics, forming the foundation of the 

task commonly referred to as image inpainting or content-
aware image editing. Historically, image inpainting emerged 
in the context of artwork restoration, where conservators 
sought to repair damaged paintings or photographs by filling 
in missing or degraded regions in a manner consistent with 
surrounding textures, colors, and shapes. Early digital 
approaches adapted these principles to photographs and 
scanned images, aiming to remove scratches, blemishes, or 
other localized defects while maintaining visual plausibility. 
In the modern era, object removal serves a wide spectrum of 
practical and commercial applications, ranging from the 
enhancement of personal photographs by removing tourists, 
vehicles, or unwanted objects, to professional media 
production for video editing and post-processing, augmented 
and virtual reality environments where seamless scene 
modification is required, and even medical imaging, where 
removing artifacts such as surgical instruments or occlusions 
can improve diagnostic accuracy and downstream analysis. 
The complexity of this task is highly dependent on several 
interrelated factors: the size and shape of the region to be 
removed, the semantic importance of the occluded object, the 
surrounding contextual information, and the type of texture 
or structure that must be synthesized, including intricate 
details such as hair, fabric, foliage, water, or architectural 
patterns. Traditional approaches, prior to the deep learning 
era, primarily relied on diffusion-based methods, which 
propagate pixel intensities and gradients into missing regions 
according to partial differential equations, and exemplar-
based methods, which copy patches from known regions to 
fill gaps. While these methods were effective for small or 
regular holes and repetitive textures, they struggled with 
larger missing regions, irregular mask shapes, and scenes 
containing unique or semantically significant content, often 
resulting in blurred, inconsistent, or unrealistic 
reconstructions that violated global structure or context. The 
advent of deep learning brought a paradigm shift to this field 
by introducing data-driven priors capable of learning 
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complex spatial, contextual, and semantic relationships 
directly from large-scale image datasets. Early deep learning 
approaches employed convolutional encoder-decoder 
architectures, which could map corrupted images to 
completed images by learning hierarchical representations of 
both local and global context, enabling the network to 
hallucinate missing content in a manner consistent with 
visible surroundings. The incorporation of adversarial 
training through generative adversarial networks (GANs) 
further enhanced perceptual realism, as the generator was 
trained to produce fills that could fool a discriminator into 
classifying them as real, producing sharper and more 
coherent textures compared to purely reconstruction-based 
losses. Over the past decade, numerous architectural 
innovations have further advanced the field: partial and gated 
convolutions selectively process valid pixels within irregular 
masks, improving feature propagation and boundary 
consistency; contextual attention mechanisms allow 
networks to identify and copy relevant patches from distant 
regions of the image, preserving both texture and semantic 
consistency; multi-stage coarse-to-fine pipelines refine 
global structure in initial stages and progressively enhance 
high-frequency details, leading to more realistic and stable 
results; transformer-based architectures capture long-range 
dependencies across spatial dimensions, enabling better 
handling of large holes or complex structures; and diffusion 
probabilistic models, through iterative denoising conditioned 
on observed pixels, generate high-fidelity and semantically 
coherent completions, often outperforming previous methods 
in terms of perceptual quality and diversity. The challenges 
inherent to object removal remain non-trivial: structural 
continuity must be preserved so that edges, shapes, and 
object boundaries remain plausible; texture synthesis must 
reproduce fine-grained details without introducing artifacts 
or inconsistencies; and semantic appropriateness requires 
that reconstructed regions conform logically to the scene, for 
example ensuring that a table remains a table after the 
removal of an occluding chair. Additional complexities arise 
due to variable hole sizes, irregular and free-form mask 
shapes, and, in video applications, the necessity of temporal 
consistency to avoid flickering or discontinuities across 
frames. Evaluation of these methods relies on a combination 
of quantitative metrics, such as Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity Index (SSIM), Learned 
Perceptual Image Patch Similarity (LPIPS), and Fréchet 
Inception Distance (FID), as well as qualitative assessments 
through human judgment, since objective metrics often fail 
to capture semantic plausibility or perceptual realism fully. 
Recent research has also explored applications beyond static 
images, including video object removal where 
spatiotemporal coherence is critical, multi-modal editing 
where text or sketches guide inpainting, and domain-specific 
adaptations for faces, medical imagery, and structured 
objects such as buildings or text, highlighting the versatility 
and practical importance of these methods. This review aims 
to synthesize the rapidly growing body of literature on deep 
learning-based object removal, categorizing major 
architectural families, examining benchmark datasets and 
evaluation criteria, providing detailed descriptions of 
influential methods across CNNs, GANs, transformers, and 
diffusion models, and presenting comparative analyses that 
illuminate their respective strengths, weaknesses, and trade-
offs. Moreover, practical considerations such as mask 

generation strategies, dataset biases, computational 
complexity, and ethical concerns are discussed to provide 
guidance for researchers and practitioners. By offering an in-
depth survey of foundational concepts, methodological 
advances, evaluation strategies, and real-world applications, 
this review seeks to serve as a comprehensive reference for 
the current state of object removal research and to highlight 
promising directions for future work, including multimodal 
guidance, 3D-consistent inpainting, self-supervised and 
unsupervised training approaches, and more efficient and 
scalable architectures that balance fidelity, generalization, 
and computational requirements. Mathematically, the 
inpainting task can be formalized as estimating missing 
pixels xmx_mxm given observed pixels xox_oxo by learning 
the conditional distribution p(xm∣xo)p(x_m|x_o)p(xm∣xo), 
which embodies the challenges of structural continuity, 
texture plausibility, and semantic appropriateness 
simultaneously, while also accounting for the variability of 
hole shapes, sizes, and, in the case of video, temporal 
coherence, ensuring that reconstructed content integrates 
seamlessly into the existing visual scene. Through this 
synthesis, the field demonstrates a trajectory of remarkable 
progress, evolving from simple patch-based heuristics to 
sophisticated, highly capable generative models that enable 
object removal at unprecedented levels of realism, 
robustness, and practical applicability across diverse domains 
and use cases. Attention mechanisms and transformer-based 
architectures have further enhanced the ability to capture 
long-range dependencies and maintain global structural 
consistency, particularly for large or irregular missing 
regions. More recently, diffusion-based generative models 
have demonstrated impressive performance in generating 
high-fidelity and semantically consistent completions 
through iterative denoising processes, often outperforming 
earlier CNN and GAN-based approaches. This review aims 
to provide a comprehensive overview of these advancements, 
covering the foundational concepts of image inpainting, 
categorizing major deep learning architectures, examining 
benchmark datasets and evaluation metrics, presenting 
detailed comparisons of state-of-the-art methods, and 
exploring extensions to video, multi-modal, and real-time 
applications. Additionally, we discuss persistent challenges, 
including generalization to diverse scenes, reconstruction of 
complex textures, temporal consistency in video, and ethical 
considerations in image editing. By synthesizing insights 
from recent literature, highlighting practical implementation 
strategies, and identifying promising avenues for future 
research, this review serves as a detailed reference for both 
researchers and practitioners seeking to understand, evaluate, 
and advance the field of deep learning-based object removal 
from images.  

A. Deep Learning for Object Removal 

The integration of deep convolutional networks has 
fundamentally transformed object removal techniques, 
transitioning from traditional patch-based methods to 
sophisticated, learned synthesis approaches. Early 
architectures, particularly encoder-decoder networks with 
skip connections, were pivotal in this shift. These networks 
implicitly learn multi-scale contextual representations, 
enabling them to reconstruct missing regions by leveraging 
information from the surrounding pixels. The seminal work 
by Pathak et al. [1] introduced Context Encoders, which 
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utilized convolutional autoencoders for image inpainting, 
setting a foundational precedent for subsequent 
developments. While these early models demonstrated 
promise, they often struggled with generating realistic 
textures and maintaining semantic consistency, especially in 
large missing regions. To address these challenges, 
Generative Adversarial Networks (GANs) were introduced 
into the inpainting pipeline. The adversarial framework 
comprises a generator that produces plausible inpainted 
regions and a discriminator that evaluates their realism, 
thereby guiding the generator to produce sharper and more 
contextually appropriate outputs. Notably, Yu et al. [2] 
enhanced this approach by incorporating contextual attention 
mechanisms, allowing the network to focus on relevant 
patches from distant regions, significantly improving the 
quality of inpainted textures. Further advancements led to the 
development of specialized convolutional techniques. Partial 
Convolutions (PConv), introduced by Liu et al. [3], mask out 
invalid pixels during convolution operations, ensuring that 
the network does not propagate corrupted information from 
missing regions. This method has been particularly effective 
in handling irregularly shaped holes. Building upon this, 
Gated Convolutions, as proposed by Yu et al. [4], introduce 
learnable gates that modulate the flow of information based 
on the presence of valid pixels, offering adaptive control 
over feature propagation and enhancing the network's ability 
to handle complex inpainting tasks. Coarse-to-fine strategies 
have also been instrumental in improving inpainting results. 
These approaches involve generating a low-resolution 
inpainting first and progressively refining it to higher 
resolutions, allowing the model to capture global structures 
before focusing on fine details. This methodology has been 
shown to stabilize training and produce more coherent 
inpainted images [2,4]. The advent of transformer-based 
models marked another significant leap in inpainting 
techniques. Vision Transformers (ViTs), which process 
images as sequences of patches, have demonstrated superior 
performance in capturing long-range dependencies and 
global context. These models have been particularly effective 
in handling large missing regions and maintaining semantic 
consistency across the inpainted areas [5]. Concurrently, 
Diffusion Models have emerged as a powerful generative 
approach for image synthesis. These models iteratively refine 
noisy images through a process of denoising, guided by the 
observed context, leading to high-quality and semantically 
coherent inpainted regions. The work by Rombach et al. [6] 
on Latent Diffusion Models exemplifies this approach, 
demonstrating its efficacy in generating realistic images from 
noisy inputs. Collectively, these deep learning-based 
methodologies have significantly advanced the field of object 
removal, enabling the generation of realistic and 
semantically consistent inpainted regions across various 
applications, from digital media editing to medical imaging. 

B. Datasets and Benchmarks 

Robust evaluation of object removal methods necessitates 
the use of diverse datasets and standardized benchmarks that 
capture a wide range of scene types, object categories, and 
mask variations, enabling fair comparison across different 
approaches. Among widely adopted datasets, Places2 [7] 
provides a large-scale collection of natural and man-made 
scenes encompassing over ten million images across 
hundreds of categories, offering diverse contextual 

backgrounds that make it a standard benchmark for general-
purpose inpainting and object removal research. For 
applications focused on human faces, CelebA-HQ [8] and 
other face-specific datasets such as FFHQ provide high-
resolution images annotated with identity information, 
facilitating evaluation of fine-grained facial details, 
symmetry, and identity preservation in inpainting tasks. Paris 
StreetView [9] focuses on urban outdoor scenes, providing 
consistent architectural structures that allow assessment of 
structural integrity in reconstructed images. The COCO 
dataset [10], which contains richly annotated everyday object 
scenes, is particularly valuable when inpainting is 
conditioned on object masks, enabling object-specific 
removal tasks and evaluation under complex occlusions. In 
addition, subsets of ImageNet [11] and domain-specific 
corpora, including medical or aerial imagery, are frequently 
used to evaluate models in specialized scenarios requiring 
texture consistency and semantic accuracy. Benchmark 
protocols typically define standardized mask sets to facilitate 
fair comparison and reproducibility, including irregular free-
form masks that simulate realistic occlusions, center square 
masks for controlled evaluation, and object-shaped masks 
derived from segmentation annotations that reflect practical 
removal scenarios. When preparing datasets for training, 
researchers must carefully select mask generation 
strategies—whether random masks, object-centric masks, or 
a mixture of both—as training with a diverse distribution of 
mask shapes and sizes significantly improves model 
generalization to arbitrary removal tasks. Synthetic mask 
generation techniques, including random brush strokes, 
erosion or dilation of segmentation maps, or realistic 
occluder shapes, further influence the robustness of trained 
models by exposing them to varied occlusion patterns and 
challenging contexts. For video object removal, datasets such 
as DAVIS [12] provide high-quality annotations of moving 
objects across temporal sequences, but due to limited dataset 
size, synthetic augmentations and temporal transformations 
are often required to scale training data and ensure temporal 
consistency in the inpainted video frames. Collectively, these 
datasets and benchmark protocols play a critical role not only 
in training effective deep learning models but also in 
evaluating their performance across metrics such as pixel-
wise reconstruction accuracy, structural similarity, perceptual 
realism, and semantic plausibility, thereby enabling 
researchers to rigorously compare methods and advance the 
state-of-the-art in object removal and image inpainting.  

II. EVALUATION METRICS 

Evaluating object removal techniques requires a combination 
of objective quantitative metrics and subjective human 
assessment to fully capture visual quality, semantic 
correctness, and perceptual realism. Traditional pixel-wise 
metrics such as Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM) [13,14] measure the 
fidelity of the reconstructed image relative to a ground truth, 
assessing differences in intensity and local structural 
patterns; however, these metrics often penalize plausible 
inpaintings that differ stylistically or texturally from the 
reference. To better align evaluation with human perception, 
perceptual metrics such as Learned Perceptual Image Patch 
Similarity (LPIPS) [15] compare images in a deep feature 
space derived from pre-trained networks, capturing semantic 
and textural similarity that traditional pixel-wise measures 
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cannot detect. For assessing generative realism, metrics 
adopted from the broader image generation literature—most 
notably the Fréchet Inception Distance (FID) [16]—evaluate 
the statistical similarity between distributions of generated 
and real images, providing insight into overall realism and 
diversity of inpainted outputs. Because these automated 
metrics do not fully capture semantic correctness, structural 
consistency, or user preference, many works complement 
quantitative evaluation with user studies, where human 
participants rate or rank inpainted images according to 
plausibility, naturalness, and fidelity to the scene. In video 
inpainting, temporal metrics are also critical, measuring 
flicker, frame-to-frame consistency, and coherence of 
dynamic content to ensure smooth and realistic video 
reconstruction. Practical evaluation protocols typically 
include quantitative reporting on standardized mask sets and 
datasets, qualitative visual comparisons on challenging 
scenarios such as large holes or structured content, ablation 
studies to isolate the impact of architectural components 
(e.g., attention modules, gated convolutions), and 
runtime/complexity analysis to assess computational 
efficiency. Furthermore, reproducibility is greatly enhanced 
when authors release code, pre-trained models, and mask-
generation scripts, allowing independent verification of 
performance and facilitating future research. Collectively, 
this multi-faceted evaluation framework provides a rigorous, 
standardized, and human-aligned basis for comparing object 
removal methods, guiding both methodological 
improvements and practical application development. 

III. RELATED WORKS 

Deep learning approaches for object removal have evolved 

considerably over the past decade, progressing from basic 

encoder-decoder models to sophisticated architectures that 

combine adversarial learning, attention mechanisms, 
transformers, and diffusion models. These methods can be 

broadly categorized based on network design, loss 

functions, and context modeling strategies. Encoder-

Decoder and U-Net Variants: Early deep learning methods 

employed encoder-decoder networks to map corrupted 

images to completed outputs. The encoder captures multi-

scale contextual features, while the decoder reconstructs 

missing regions. Skip connections, as introduced in U-Net 

architectures [17, 18], allow low-level spatial details to 

bypass the bottleneck, improving the fidelity of 

reconstructed textures and stabilizing training. Despite these 

advantages, models trained solely with pixel-wise losses (L1 
or L2) often produce overly smooth results, motivating the 

integration of adversarial losses and perceptual feature 

losses to enhance sharpness and semantic realism. GAN-

Based Architectures: Generative Adversarial Networks 

(GANs) [19] significantly advanced inpainting realism by 

introducing a discriminator that evaluates whether 

reconstructed patches are visually plausible. Strategies such 

as PatchGAN discriminators focus on local texture realism, 

while multi-scale discriminators assess outputs at multiple 

resolutions. GANs are often combined with perceptual 

losses computed from pretrained networks to encourage 
both local and global feature consistency. Although GANs 

improve sharpness and plausibility, they are challenging to 

train and may suffer from artifacts, instability, or mode 

collapse. Partial and Gated Convolutions: Partial 

convolutions [20] address the problem of irregular or 

arbitrary missing regions by masking out invalid pixels 

during convolution, computing activations only over valid 

regions, and updating the mask progressively through 
layers. This explicit handling of missing data reduces 

boundary artifacts and improves structure reconstruction. 

Gated convolutions [21] extend this idea by learning per-

pixel gating functions that dynamically modulate feature 

propagation based on mask presence, offering greater 

flexibility for complex hole shapes and varying contextual 

dependencies. Contextual Attention and Patch-Based 

Copying: Contextual attention modules [22] allow networks 

to identify relevant patches from distant regions of the 

image and transfer their textures into missing areas. This 

mechanism is particularly effective for repeating patterns, 

such as brick walls or tiled floors, where semantically 
similar content exists elsewhere. The copied content is then 

refined through convolutional layers, combining local detail 

synthesis with long-range context propagation. Coarse-to-

Fine and Multi-Stage Pipelines: Many inpainting models 

employ a multi-stage design that first predicts a coarse 

approximation of the missing region, capturing global 

structure, layout, and color, followed by refinement stages 

that add high-frequency textures. This strategy stabilizes 

adversarial training and allows separate loss functions to 

target structural accuracy and texture fidelity independently 

[23]. Coarse-to-fine designs have been shown to 
consistently produce more coherent and realistic outputs, 

particularly for large missing regions. Transformer and 

Attention-Centric Models: Transformers, initially developed 

for sequential tasks in natural language processing, have 

been adapted for images by treating image patches or pixel 

embeddings as tokens. Vision transformers (ViTs) [24] 

capture long-range dependencies across the entire image, 

improving performance in filling large holes and 

maintaining global semantic coherence. Hybrid CNN-

transformer architectures combine local inductive biases 

from convolutions with global attention mechanisms, 

balancing efficiency with expressive power. Diffusion-
Based Approaches: Diffusion probabilistic models [25] have 

recently emerged as powerful generative frameworks for 

image inpainting. These models iteratively refine noisy 

initializations through denoising steps conditioned on 

observed pixels, producing high-fidelity and diverse 

reconstructions. While computationally intensive due to 

iterative sampling, advancements such as accelerated 

sampling methods and classifier-free guidance have 

improved their practicality for image editing and object 

removal tasks. Diffusion models are particularly effective in 

generating high-quality textures and complex structures that 
other methods struggle with. Specialized Networks for 

Faces and Structured Objects: Certain inpainting tasks 

require specialized handling. Face inpainting often imposes 

identity-preserving constraints, leveraging facial landmark 

priors, identity-preserving losses computed from pretrained 

recognition networks, and high-resolution face datasets [8]. 

Structural objects such as buildings, text, or road scenes 

require preservation of straight lines, perspective, and 

typographic consistency. Techniques for such domains may 
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incorporate geometry-aware modules, perspective priors, or 

object-specific architectural constraints to maintain 

structural fidelity while performing object removal. 

Collectively, these major approaches highlight the diversity 

and complexity of modern object removal techniques, 
illustrating the balance between local texture synthesis, 

global semantic coherence, and computational efficiency. 

Each class of methods addresses distinct challenges, from 

handling arbitrary mask shapes and preserving high-

frequency details to maintaining temporal consistency in 

video or identity features in faces, forming a foundation for 

further research and hybrid innovations in image inpainting. 

A. Comparative Analysis of Methods 

A comparative analysis of object removal approaches 

highlights distinct strengths, limitations, and trade-offs 

among different architectural families, providing guidance 

for method selection based on application requirements and 

computational constraints. GAN-based architectures [26] are 

widely recognized for producing the sharpest and most 

perceptually realistic textures due to adversarial training, yet 
they require careful tuning, are prone to instability, and 

often underperform on large missing regions where global 

semantic consistency is critical. Contextual attention and 

patch-copying methods [27] perform exceptionally well 

when the missing region contains patterns or textures 

repeated elsewhere in the image, such as tiled walls, foliage, 

or bricks, but their performance degrades when novel or 

unique content must be synthesized, leading to either blurry 

or semantically inconsistent reconstructions. Transformer-

based models [28] offer substantial improvements in global 

coherence, capturing long-range dependencies and reducing 

semantic errors across extensive missing areas, though these 
models are computationally intensive and require large-scale 

training datasets to generalize effectively. Diffusion-based 

approaches [29] currently lead in terms of generative 

fidelity, producing highly realistic and structurally coherent 

completions even for complex or irregular holes, but their 

iterative sampling process results in significantly higher 

inference times, making them less suitable for real-time 

applications without acceleration techniques. Hybrid models 

that combine CNN backbones with attention mechanisms 

[30] often achieve a strong balance between quality, speed, 

and stability, leveraging local feature extraction while 
capturing broader context. From an application standpoint, 

method choice is influenced by domain constraints and 

performance requirements. Real-time applications, such as 

mobile photo editing or augmented reality, prioritize 

computationally efficient CNN-based networks with modest 

floating-point operations (FLOPs), whereas offline tasks, 

including professional photo retouching, video post-

production, or medical image restoration, can accommodate 

heavier architectures such as transformers or diffusion 

models that emphasize fidelity over speed. Domain 

specificity further dictates evaluation criteria: face 

inpainting and medical imaging demand strict fidelity, 
identity preservation, and semantic correctness, while tasks 

such as background scenery replacement or generic object 

removal may tolerate greater perceptual variation and minor 

artifacts. Qualitative and quantitative assessments—

including metrics such as PSNR, SSIM, LPIPS, FID, and 

human perceptual studies—enable a rigorous comparison 

across these methods, emphasizing that the ideal approach is 

context-dependent and often involves a trade-off between 

speed, fidelity, and computational resource availability. 

IV. CONCLUSION & FUTURE SCOPE 

Object removal from images has progressed from traditional 

handcrafted diffusion and patch-based methods to advanced 
deep learning frameworks capable of convincingly 

reconstructing missing regions. Each architectural paradigm 

offers distinct advantages: GANs excel in perceptual 

sharpness and texture realism, attention-based modules 

facilitate patch transfer and semantic consistency, 

transformers capture long-range dependencies for global 

coherence, and diffusion models deliver high-fidelity 

reconstructions with complex structure and texture. Despite 

these advancements, significant challenges remain, 

including reliable large-hole reconstruction, temporal 

consistency in video sequences, generalization across 
domains, fairness, and ethical use of image manipulation 

technologies. Future research directions are poised to 

address these challenges: multimodal editing combining 

text, sketches, or exemplar images can provide intuitive, 

user-guided control; integration with large vision-language 

models may allow semantic-aware inpainting guided by 

natural language; efficient transformer architectures and 

distilled diffusion models promise high-fidelity results 

suitable for real-time applications; self-supervised and 

unsupervised learning strategies can reduce dependence on 

paired training data; and domain adaptation techniques will 

improve robustness across diverse imaging contexts. 
Additionally, 3D-consistent inpainting leveraging multi-

view or volumetric captures will facilitate object removal 

that preserves geometric and parallax fidelity, while video 

inpainting can benefit from combining optical flow, 

recurrent architectures, and temporal attention mechanisms 

to maintain frame-to-frame consistency. Finally, the 

establishment of standardized, human-centric benchmarks, 

along with clear ethical guidelines, will be crucial for 

responsible progress, ensuring that the technology advances 

both academic understanding and practical applications in a 

safe and equitable manner. This review aims to provide a 
comprehensive reference for researchers and practitioners, 

highlighting current methodologies, evaluation strategies, 

and open challenges while outlining promising avenues for 

future work.   
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