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Abstract— Object removal from images, often referred to as
image inpainting or content-aware editing, is a fundamental and
challenging task in computer vision that aims to seamlessly
reconstruct missing or undesired regions in images while
preserving visual realism, semantic coherence, and structural
integrity. This problem has garnered significant attention due to
its wide range of practical applications, including professional
photography, augmented and virtual reality, video post-
processing, medical image artifact removal, and surveillance,
where accurate restoration of occluded or corrupted areas is
critical. Early approaches to this problem relied primarily on
traditional signal-processing techniques and patch-based
methods, such as diffusion-based propagation or exemplar-based
patch matching, which achieved notable successes for small
missing regions and repetitive textures but struggled with large
holes, complex textures, and maintaining global semantic
consistency. The advent of deep learning has transformed the
field by introducing data-driven models capable of learning
complex patterns and contextual relationships from large
datasets. Convolutional neural networks (CNNs) provided the
first major leap, enabling end-to-end learning of hierarchical
image representations that could generate plausible fills
conditioned on the visible context. Building upon this, generative
adversarial networks (GANs) further improved perceptual
realism by employing adversarial training, where a generator
synthesizes missing regions and a discriminator evaluates
authenticity, leading to sharper and more coherent inpainting
results.

Keywords— Image Inpainting, Object Removal, Deep
Learning, GANs, Transformers, Diffusion Models, Computer
Vision.

I. INTRODUCTION

The ability to remove unwanted objects from images
while preserving visual realism, semantic coherence, and
structural integrity has long been a central goal in computer
vision and computer graphics, forming the foundation of the
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task commonly referred to as image inpainting or content-
aware image editing. Historically, image inpainting emerged
in the context of artwork restoration, where conservators
sought to repair damaged paintings or photographs by filling
in missing or degraded regions in a manner consistent with
surrounding textures, colors, and shapes. Early digital
approaches adapted these principles to photographs and
scanned images, aiming to remove scratches, blemishes, or
other localized defects while maintaining visual plausibility.
In the modern era, object removal serves a wide spectrum of
practical and commercial applications, ranging from the
enhancement of personal photographs by removing tourists,
vehicles, or unwanted objects, to professional media
production for video editing and post-processing, augmented
and virtual reality environments where seamless scene
modification is required, and even medical imaging, where
removing artifacts such as surgical instruments or occlusions
can improve diagnostic accuracy and downstream analysis.
The complexity of this task is highly dependent on several
interrelated factors: the size and shape of the region to be
removed, the semantic importance of the occluded object, the
surrounding contextual information, and the type of texture
or structure that must be synthesized, including intricate
details such as hair, fabric, foliage, water, or architectural
patterns. Traditional approaches, prior to the deep learning
era, primarily relied on diffusion-based methods, which
propagate pixel intensities and gradients into missing regions
according to partial differential equations, and exemplar-
based methods, which copy patches from known regions to
fill gaps. While these methods were effective for small or
regular holes and repetitive textures, they struggled with
larger missing regions, irregular mask shapes, and scenes
containing unique or semantically significant content, often
resulting in  blurred, inconsistent, or unrealistic
reconstructions that violated global structure or context. The
advent of deep learning brought a paradigm shift to this field
by introducing data-driven priors capable of learning
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complex spatial, contextual, and semantic relationships
directly from large-scale image datasets. Early deep learning
approaches employed convolutional  encoder-decoder
architectures, which could map corrupted images to
completed images by learning hierarchical representations of
both local and global context, enabling the network to
hallucinate missing content in a manner consistent with
visible surroundings. The incorporation of adversarial
training through generative adversarial networks (GANS)
further enhanced perceptual realism, as the generator was
trained to produce fills that could fool a discriminator into
classifying them as real, producing sharper and more
coherent textures compared to purely reconstruction-based
losses. Over the past decade, numerous architectural
innovations have further advanced the field: partial and gated
convolutions selectively process valid pixels within irregular
masks, improving feature propagation and boundary
consistency; contextual attention mechanisms allow
networks to identify and copy relevant patches from distant
regions of the image, preserving both texture and semantic
consistency; multi-stage coarse-to-fine pipelines refine
global structure in initial stages and progressively enhance
high-frequency details, leading to more realistic and stable
results; transformer-based architectures capture long-range
dependencies across spatial dimensions, enabling better
handling of large holes or complex structures; and diffusion
probabilistic models, through iterative denoising conditioned
on observed pixels, generate high-fidelity and semantically
coherent completions, often outperforming previous methods
in terms of perceptual quality and diversity. The challenges
inherent to object removal remain non-trivial: structural
continuity must be preserved so that edges, shapes, and
object boundaries remain plausible; texture synthesis must
reproduce fine-grained details without introducing artifacts
or inconsistencies; and semantic appropriateness requires
that reconstructed regions conform logically to the scene, for
example ensuring that a table remains a table after the
removal of an occluding chair. Additional complexities arise
due to variable hole sizes, irregular and free-form mask
shapes, and, in video applications, the necessity of temporal
consistency to avoid flickering or discontinuities across
frames. Evaluation of these methods relies on a combination
of quantitative metrics, such as Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), Learned
Perceptual Image Patch Similarity (LPIPS), and Fréchet
Inception Distance (FID), as well as qualitative assessments
through human judgment, since objective metrics often fail
to capture semantic plausibility or perceptual realism fully.
Recent research has also explored applications beyond static
images, including video object removal where
spatiotemporal coherence is critical, multi-modal editing
where text or sketches guide inpainting, and domain-specific
adaptations for faces, medical imagery, and structured
objects such as buildings or text, highlighting the versatility
and practical importance of these methods. This review aims
to synthesize the rapidly growing body of literature on deep
learning-based  object removal, categorizing major
architectural families, examining benchmark datasets and
evaluation criteria, providing detailed descriptions of
influential methods across CNNs, GANS, transformers, and
diffusion models, and presenting comparative analyses that
illuminate their respective strengths, weaknesses, and trade-
offs. Moreover, practical considerations such as mask
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generation  strategies, dataset biases, computational
complexity, and ethical concerns are discussed to provide
guidance for researchers and practitioners. By offering an in-
depth survey of foundational concepts, methodological
advances, evaluation strategies, and real-world applications,
this review seeks to serve as a comprehensive reference for
the current state of object removal research and to highlight
promising directions for future work, including multimodal
guidance, 3D-consistent inpainting, self-supervised and
unsupervised training approaches, and more efficient and
scalable architectures that balance fidelity, generalization,
and computational requirements. Mathematically, the
inpainting task can be formalized as estimating missing
pixels xmx_mxm given observed pixels xox_oxo by learning
the conditional distribution p(xmxo)p(X_m[x_o)p(xm|xo),
which embodies the challenges of structural continuity,
texture  plausibility, and semantic  appropriateness
simultaneously, while also accounting for the variability of
hole shapes, sizes, and, in the case of video, temporal
coherence, ensuring that reconstructed content integrates
seamlessly into the existing visual scene. Through this
synthesis, the field demonstrates a trajectory of remarkable
progress, evolving from simple patch-based heuristics to
sophisticated, highly capable generative models that enable
object removal at unprecedented levels of realism,
robustness, and practical applicability across diverse domains
and use cases. Attention mechanisms and transformer-based
architectures have further enhanced the ability to capture
long-range dependencies and maintain global structural
consistency, particularly for large or irregular missing
regions. More recently, diffusion-based generative models
have demonstrated impressive performance in generating
high-fidelity and semantically consistent completions
through iterative denoising processes, often outperforming
earlier CNN and GAN-based approaches. This review aims
to provide a comprehensive overview of these advancements,
covering the foundational concepts of image inpainting,
categorizing major deep learning architectures, examining
benchmark datasets and evaluation metrics, presenting
detailed comparisons of state-of-the-art methods, and
exploring extensions to video, multi-modal, and real-time
applications. Additionally, we discuss persistent challenges,
including generalization to diverse scenes, reconstruction of
complex textures, temporal consistency in video, and ethical
considerations in image editing. By synthesizing insights
from recent literature, highlighting practical implementation
strategies, and identifying promising avenues for future
research, this review serves as a detailed reference for both
researchers and practitioners seeking to understand, evaluate,
and advance the field of deep learning-based object removal
from images.

A. Deep Learning for Object Removal
The integration of deep convolutional networks has

fundamentally transformed object removal techniques,
transitioning from traditional patch-based methods to
sophisticated, learned synthesis approaches. Early

architectures, particularly encoder-decoder networks with
skip connections, were pivotal in this shift. These networks
implicitly learn multi-scale contextual representations,
enabling them to reconstruct missing regions by leveraging
information from the surrounding pixels. The seminal work
by Pathak et al. [1] introduced Context Encoders, which
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utilized convolutional autoencoders for image inpainting,
setting a foundational precedent for  subsequent
developments. While these early models demonstrated
promise, they often struggled with generating realistic
textures and maintaining semantic consistency, especially in
large missing regions. To address these challenges,
Generative Adversarial Networks (GANSs) were introduced
into the inpainting pipeline. The adversarial framework
comprises a generator that produces plausible inpainted
regions and a discriminator that evaluates their realism,
thereby guiding the generator to produce sharper and more
contextually appropriate outputs. Notably, Yu et al. [2]
enhanced this approach by incorporating contextual attention
mechanisms, allowing the network to focus on relevant
patches from distant regions, significantly improving the
quality of inpainted textures. Further advancements led to the
development of specialized convolutional techniques. Partial
Convolutions (PConv), introduced by Liu et al. [3], mask out
invalid pixels during convolution operations, ensuring that
the network does not propagate corrupted information from
missing regions. This method has been particularly effective
in handling irregularly shaped holes. Building upon this,
Gated Convolutions, as proposed by Yu et al. [4], introduce
learnable gates that modulate the flow of information based
on the presence of valid pixels, offering adaptive control
over feature propagation and enhancing the network's ability
to handle complex inpainting tasks. Coarse-to-fine strategies
have also been instrumental in improving inpainting results.
These approaches involve generating a low-resolution
inpainting first and progressively refining it to higher
resolutions, allowing the model to capture global structures
before focusing on fine details. This methodology has been
shown to stabilize training and produce more coherent
inpainted images [2,4]. The advent of transformer-based
models marked another significant leap in inpainting
techniques. Vision Transformers (ViTs), which process
images as sequences of patches, have demonstrated superior
performance in capturing long-range dependencies and
global context. These models have been particularly effective
in handling large missing regions and maintaining semantic
consistency across the inpainted areas [5]. Concurrently,
Diffusion Models have emerged as a powerful generative
approach for image synthesis. These models iteratively refine
noisy images through a process of denoising, guided by the
observed context, leading to high-quality and semantically
coherent inpainted regions. The work by Rombach et al. [6]
on Latent Diffusion Models exemplifies this approach,
demonstrating its efficacy in generating realistic images from
noisy inputs. Collectively, these deep learning-based
methodologies have significantly advanced the field of object
removal, enabling the generation of realistic and
semantically consistent inpainted regions across various
applications, from digital media editing to medical imaging.

B. Datasets and Benchmarks

Robust evaluation of object removal methods necessitates
the use of diverse datasets and standardized benchmarks that
capture a wide range of scene types, object categories, and
mask variations, enabling fair comparison across different
approaches. Among widely adopted datasets, Places2 [7]
provides a large-scale collection of natural and man-made
scenes encompassing over ten million images across
hundreds of categories, offering diverse contextual
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backgrounds that make it a standard benchmark for general-
purpose inpainting and object removal research. For
applications focused on human faces, CelebA-HQ [8] and
other face-specific datasets such as FFHQ provide high-
resolution images annotated with identity information,
facilitating evaluation of fine-grained facial details,
symmetry, and identity preservation in inpainting tasks. Paris
StreetView [9] focuses on urban outdoor scenes, providing
consistent architectural structures that allow assessment of
structural integrity in reconstructed images. The COCO
dataset [10], which contains richly annotated everyday object
scenes, is particularly valuable when inpainting is
conditioned on object masks, enabling object-specific
removal tasks and evaluation under complex occlusions. In
addition, subsets of ImageNet [11] and domain-specific
corpora, including medical or aerial imagery, are frequently
used to evaluate models in specialized scenarios requiring
texture consistency and semantic accuracy. Benchmark
protocols typically define standardized mask sets to facilitate
fair comparison and reproducibility, including irregular free-
form masks that simulate realistic occlusions, center square
masks for controlled evaluation, and object-shaped masks
derived from segmentation annotations that reflect practical
removal scenarios. When preparing datasets for training,
researchers must carefully select mask generation
strategies—whether random masks, object-centric masks, or
a mixture of both—as training with a diverse distribution of
mask shapes and sizes significantly improves model
generalization to arbitrary removal tasks. Synthetic mask
generation techniques, including random brush strokes,
erosion or dilation of segmentation maps, or realistic
occluder shapes, further influence the robustness of trained
models by exposing them to varied occlusion patterns and
challenging contexts. For video object removal, datasets such
as DAVIS [12] provide high-quality annotations of moving
objects across temporal sequences, but due to limited dataset
size, synthetic augmentations and temporal transformations
are often required to scale training data and ensure temporal
consistency in the inpainted video frames. Collectively, these
datasets and benchmark protocols play a critical role not only
in training effective deep learning models but also in
evaluating their performance across metrics such as pixel-
wise reconstruction accuracy, structural similarity, perceptual
realism, and semantic plausibility, thereby enabling
researchers to rigorously compare methods and advance the
state-of-the-art in object removal and image inpainting.

Il. EVALUATION METRICS

Evaluating object removal techniques requires a combination
of objective quantitative metrics and subjective human
assessment to fully capture visual quality, semantic
correctness, and perceptual realism. Traditional pixel-wise
metrics such as Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) [13,14] measure the
fidelity of the reconstructed image relative to a ground truth,
assessing differences in intensity and local structural
patterns; however, these metrics often penalize plausible
inpaintings that differ stylistically or texturally from the
reference. To better align evaluation with human perception,
perceptual metrics such as Learned Perceptual Image Patch
Similarity (LPIPS) [15] compare images in a deep feature
space derived from pre-trained networks, capturing semantic
and textural similarity that traditional pixel-wise measures
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cannot detect. For assessing generative realism, metrics
adopted from the broader image generation literature—most
notably the Fréchet Inception Distance (FID) [16]—evaluate
the statistical similarity between distributions of generated
and real images, providing insight into overall realism and
diversity of inpainted outputs. Because these automated
metrics do not fully capture semantic correctness, structural
consistency, or user preference, many works complement
quantitative evaluation with user studies, where human
participants rate or rank inpainted images according to
plausibility, naturalness, and fidelity to the scene. In video
inpainting, temporal metrics are also critical, measuring
flicker, frame-to-frame consistency, and coherence of
dynamic content to ensure smooth and realistic video
reconstruction. Practical evaluation protocols typically
include quantitative reporting on standardized mask sets and
datasets, qualitative visual comparisons on challenging
scenarios such as large holes or structured content, ablation
studies to isolate the impact of architectural components
(e.g., attention modules, gated convolutions), and
runtime/complexity analysis to assess computational
efficiency. Furthermore, reproducibility is greatly enhanced
when authors release code, pre-trained models, and mask-
generation scripts, allowing independent verification of
performance and facilitating future research. Collectively,
this multi-faceted evaluation framework provides a rigorous,
standardized, and human-aligned basis for comparing object
removal methods, guiding both  methodological
improvements and practical application development.

I1l. RELATED WORKS

Deep learning approaches for object removal have evolved
considerably over the past decade, progressing from basic
encoder-decoder models to sophisticated architectures that
combine adversarial learning, attention mechanisms,
transformers, and diffusion models. These methods can be
broadly categorized based on network design, loss
functions, and context modeling strategies. Encoder-
Decoder and U-Net Variants: Early deep learning methods
employed encoder-decoder networks to map corrupted
images to completed outputs. The encoder captures multi-
scale contextual features, while the decoder reconstructs
missing regions. Skip connections, as introduced in U-Net
architectures [17, 18], allow low-level spatial details to
bypass the bottleneck, improving the fidelity of
reconstructed textures and stabilizing training. Despite these
advantages, models trained solely with pixel-wise losses (L1
or L2) often produce overly smooth results, motivating the
integration of adversarial losses and perceptual feature
losses to enhance sharpness and semantic realism. GAN-
Based Architectures: Generative Adversarial Networks
(GANSs) [19] significantly advanced inpainting realism by
introducing a discriminator that evaluates whether
reconstructed patches are visually plausible. Strategies such
as PatchGAN discriminators focus on local texture realism,
while multi-scale discriminators assess outputs at multiple
resolutions. GANs are often combined with perceptual
losses computed from pretrained networks to encourage
both local and global feature consistency. Although GANs
improve sharpness and plausibility, they are challenging to
train and may suffer from artifacts, instability, or mode
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collapse. Partial and Gated Convolutions: Partial
convolutions [20] address the problem of irregular or
arbitrary missing regions by masking out invalid pixels
during convolution, computing activations only over valid
regions, and updating the mask progressively through
layers. This explicit handling of missing data reduces
boundary artifacts and improves structure reconstruction.
Gated convolutions [21] extend this idea by learning per-
pixel gating functions that dynamically modulate feature
propagation based on mask presence, offering greater
flexibility for complex hole shapes and varying contextual
dependencies. Contextual Attention and Patch-Based
Copying: Contextual attention modules [22] allow networks
to identify relevant patches from distant regions of the
image and transfer their textures into missing areas. This
mechanism is particularly effective for repeating patterns,
such as brick walls or tiled floors, where semantically
similar content exists elsewhere. The copied content is then
refined through convolutional layers, combining local detail
synthesis with long-range context propagation. Coarse-to-
Fine and Multi-Stage Pipelines: Many inpainting models
employ a multi-stage design that first predicts a coarse
approximation of the missing region, capturing global
structure, layout, and color, followed by refinement stages
that add high-frequency textures. This strategy stabilizes
adversarial training and allows separate loss functions to
target structural accuracy and texture fidelity independently
[23]. Coarse-to-fine designs have been shown to
consistently produce more coherent and realistic outputs,
particularly for large missing regions. Transformer and
Attention-Centric Models: Transformers, initially developed
for sequential tasks in natural language processing, have
been adapted for images by treating image patches or pixel
embeddings as tokens. Vision transformers (ViTs) [24]
capture long-range dependencies across the entire image,
improving performance in filling large holes and
maintaining global semantic coherence. Hybrid CNN-
transformer architectures combine local inductive biases
from convolutions with global attention mechanisms,
balancing efficiency with expressive power. Diffusion-
Based Approaches: Diffusion probabilistic models [25] have
recently emerged as powerful generative frameworks for
image inpainting. These models iteratively refine noisy
initializations through denoising steps conditioned on
observed pixels, producing high-fidelity and diverse
reconstructions. While computationally intensive due to
iterative sampling, advancements such as accelerated
sampling methods and classifier-free guidance have
improved their practicality for image editing and object
removal tasks. Diffusion models are particularly effective in
generating high-quality textures and complex structures that
other methods struggle with. Specialized Networks for
Faces and Structured Objects: Certain inpainting tasks
require specialized handling. Face inpainting often imposes
identity-preserving constraints, leveraging facial landmark
priors, identity-preserving losses computed from pretrained
recognition networks, and high-resolution face datasets [8].
Structural objects such as buildings, text, or road scenes
require preservation of straight lines, perspective, and
typographic consistency. Techniques for such domains may
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incorporate geometry-aware modules, perspective priors, or
object-specific  architectural constraints to maintain
structural fidelity while performing object removal.
Collectively, these major approaches highlight the diversity
and complexity of modern object removal techniques,
illustrating the balance between local texture synthesis,
global semantic coherence, and computational efficiency.
Each class of methods addresses distinct challenges, from
handling arbitrary mask shapes and preserving high-
frequency details to maintaining temporal consistency in
video or identity features in faces, forming a foundation for
further research and hybrid innovations in image inpainting.

A. Comparative Analysis of Methods

A comparative analysis of object removal approaches
highlights distinct strengths, limitations, and trade-offs
among different architectural families, providing guidance
for method selection based on application requirements and
computational constraints. GAN-based architectures [26] are
widely recognized for producing the sharpest and most
perceptually realistic textures due to adversarial training, yet
they require careful tuning, are prone to instability, and
often underperform on large missing regions where global
semantic consistency is critical. Contextual attention and
patch-copying methods [27] perform exceptionally well
when the missing region contains patterns or textures
repeated elsewhere in the image, such as tiled walls, foliage,
or bricks, but their performance degrades when novel or
unique content must be synthesized, leading to either blurry
or semantically inconsistent reconstructions. Transformer-
based models [28] offer substantial improvements in global
coherence, capturing long-range dependencies and reducing
semantic errors across extensive missing areas, though these
models are computationally intensive and require large-scale
training datasets to generalize effectively. Diffusion-based
approaches [29] currently lead in terms of generative
fidelity, producing highly realistic and structurally coherent
completions even for complex or irregular holes, but their
iterative sampling process results in significantly higher
inference times, making them less suitable for real-time
applications without acceleration techniques. Hybrid models
that combine CNN backbones with attention mechanisms
[30] often achieve a strong balance between quality, speed,
and stability, leveraging local feature extraction while
capturing broader context. From an application standpoint,
method choice is influenced by domain constraints and
performance requirements. Real-time applications, such as
mobile photo editing or augmented reality, prioritize
computationally efficient CNN-based networks with modest
floating-point operations (FLOPs), whereas offline tasks,
including professional photo retouching, video post-
production, or medical image restoration, can accommodate
heavier architectures such as transformers or diffusion
models that emphasize fidelity over speed. Domain
specificity further dictates evaluation criteria: face
inpainting and medical imaging demand strict fidelity,
identity preservation, and semantic correctness, while tasks
such as background scenery replacement or generic object
removal may tolerate greater perceptual variation and minor
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artifacts. Qualitative and quantitative assessments—
including metrics such as PSNR, SSIM, LPIPS, FID, and
human perceptual studies—enable a rigorous comparison
across these methods, emphasizing that the ideal approach is
context-dependent and often involves a trade-off between
speed, fidelity, and computational resource availability.

1VV. CONCLUSION & FUTURE SCOPE

Object removal from images has progressed from traditional
handcrafted diffusion and patch-based methods to advanced
deep learning frameworks capable of convincingly
reconstructing missing regions. Each architectural paradigm
offers distinct advantages: GANs excel in perceptual
sharpness and texture realism, attention-based modules
facilitate patch transfer and semantic consistency,
transformers capture long-range dependencies for global
coherence, and diffusion models deliver high-fidelity
reconstructions with complex structure and texture. Despite
these advancements, significant challenges remain,
including reliable large-hole reconstruction, temporal
consistency in video sequences, generalization across
domains, fairness, and ethical use of image manipulation
technologies. Future research directions are poised to
address these challenges: multimodal editing combining
text, sketches, or exemplar images can provide intuitive,
user-guided control; integration with large vision-language
models may allow semantic-aware inpainting guided by
natural language; efficient transformer architectures and
distilled diffusion models promise high-fidelity results
suitable for real-time applications; self-supervised and
unsupervised learning strategies can reduce dependence on
paired training data; and domain adaptation techniques will
improve robustness across diverse imaging contexts.
Additionally, 3D-consistent inpainting leveraging multi-
view or volumetric captures will facilitate object removal
that preserves geometric and parallax fidelity, while video
inpainting can benefit from combining optical flow,
recurrent architectures, and temporal attention mechanisms
to maintain frame-to-frame consistency. Finally, the
establishment of standardized, human-centric benchmarks,
along with clear ethical guidelines, will be crucial for
responsible progress, ensuring that the technology advances
both academic understanding and practical applications in a
safe and equitable manner. This review aims to provide a
comprehensive reference for researchers and practitioners,
highlighting current methodologies, evaluation strategies,
and open challenges while outlining promising avenues for
future work.
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