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Abstract— Visual effects (VFX) have evolved into a crucial 

component of modern entertainment, enabling filmmakers, game 

developers, and content creators to achieve visuals that transcend 

physical constraints. Traditional pipelines, grounded in computer 

graphics and manual artistry, often demand extensive effort and 

resources. The emergence of deep learning has introduced a 

paradigm shift, allowing for data-driven automation, 

photorealistic rendering, and intelligent scene manipulation. 

Deep learning models such as convolutional neural networks 

(CNNs), generative adversarial networks (GANs), transformers, 

diffusion models, and neural radiance fields (NeRFs) have 

reshaped workflows in areas such as object removal, background 

replacement, motion capture, super-resolution, style transfer, and 

text-to-video synthesis. This paper provides a comprehensive 

review of deep learning in VFX, consolidating advances in 

architectures, datasets, evaluation methods, and real-world 

applications. Key challenges—such as temporal consistency, 

computational overhead, dataset scarcity, and ethical concerns—

are analyzed, while emerging research directions including 

multimodal control, efficient generative modeling, and real-time 

deployment are highlighted.   

 

Keywords— Deep learning, visual effects, VFX, generative 

adversarial networks, transformers, diffusion models, neural 
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I. INTRODUCTION 

Visual effects (VFX) refer to the integration of computer-

generated imagery (CGI) with live-action footage to create 

visual content that would otherwise be impractical or 

impossible to capture on camera. Over the past decades, 

VFX has grown into a multi-billion-dollar industry spanning 

cinema, gaming, advertising, and immersive media such as 
augmented reality (AR) and virtual reality (VR). Traditional 

VFX pipelines rely on manual rotoscoping, chroma keying, 

physics-based simulations, and handcrafted modeling, 

which, while effective, are resource-intensive and time-

consuming [1]. Deep learning has revolutionized this 

landscape by automating core processes through data-driven 

methods. For instance, CNNs facilitate accurate foreground-

background segmentation [2], GANs produce photorealistic 

textures and synthetic imagery [3], and transformers 

enhance temporal coherence across video sequences [4]. 

Diffusion models, which iteratively refine images through 

stochastic denoising, are emerging as state-of-the-art for 

generating high-quality and diverse imagery [5]. The 
motivation for this paper is to provide researchers and 

practitioners with a unified review of how deep learning has 

transformed VFX pipelines. We emphasize the relationship 

between foundational computer vision tasks and their direct 

integration into creative workflows. This includes not only 

technical contributions but also practical adoption in 

industries such as cinema (e.g., The Irishman for de-aging 

[6]) and streaming media. Furthermore, we examine the 

societal implications of AI-driven VFX, such as deepfakes 

and intellectual property challenges, highlighting the 

necessity of ethical frameworks [7].  
 

 
 

Fig.1. VFX Example [7] 
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II. RELATED WORKS 

A. Traditional VFX Pipelines 

Conventional VFX pipelines relied heavily on a 

combination of computer graphics, procedural modeling, 

and manual compositing techniques. Tools such as 
Autodesk Maya, 3ds Max, and Adobe After Effects became 

industry standards for generating visual effects, enabling the 

design of particle systems, fluid dynamics, and physically 

based simulations [8]. Techniques like rotoscoping and 

chroma keying (green/blue screen compositing) were central 

to isolating subjects and integrating them into synthetic 

environments. However, while effective, these methods 

demanded significant manual labor, often requiring frame-

by-frame annotation by skilled artists. Moreover, scalability 

was limited, as every new project required custom tuning of 

parameters, and rendering times were often prohibitively 

expensive [9]. Despite incremental improvements in 
hardware acceleration and procedural workflows, traditional 

pipelines lacked adaptability to real-world variability such 

as motion blur, occlusion, and dynamic lighting, creating 
bottlenecks for large-scale productions [10].  

B. Transition to Machine Learning 

Prior to the deep learning revolution, machine learning 

approaches began to augment traditional VFX workflows. 

Early applications included optical flow estimation for 

motion tracking [11], active contours (snakes) for object 

boundary refinement, and handcrafted descriptors such as 

SIFT and SURF for feature matching and scene 

reconstruction [12]. These methods offered a degree of 

automation but were brittle under complex scenarios, 

particularly in the presence of heavy occlusions, 

illumination changes, or non-rigid object motion. 

Probabilistic graphical models such as Markov Random 

Fields (MRFs) and Conditional Random Fields (CRFs) were 
also used for segmentation and matting, but their reliance on 

manually engineered features limited scalability [13]. By the 

late 2000s, shallow learning methods, including support 

vector machines (SVMs) and random forests, were 

introduced for tasks like scene classification and face 

tracking, leading to modest improvements in semi-

automated VFX [14]. However, these models lacked the 

representational power to capture high-dimensional visual 

patterns, and their performance degraded on large-scale, 

uncurated datasets. These limitations paved the way for the 

adoption of deep learning approaches, which demonstrated 
superior generalization by leveraging massive data and 

hierarchical feature extraction [15].  

C. Rise of Deep Learning in VFX 

The introduction of AlexNet in 2012 [16] marked a 

watershed moment for computer vision, demonstrating the 

power of deep convolutional networks on large-scale 
datasets like ImageNet. This success rapidly influenced 

VFX pipelines, particularly in automating tasks such as 

semantic segmentation, matte extraction, and style transfer. 

Soon after, Generative Adversarial Networks (GANs), 

introduced by Goodfellow et al. in 2014 [17], transformed 

visual content generation by producing photorealistic 

textures and completing missing regions in images. This 

was especially significant for object removal, scene 

completion, and super-resolution, all core components of 

VFX workflows [18]. In parallel, advances in 3D deep 

learning extended applications beyond static imagery. 
Works on volumetric CNNs [19], point cloud networks [20], 

and later Neural Radiance Fields (NeRFs) [21] enabled the 

reconstruction of 3D geometry and dynamic character 

animation from minimal inputs such as sparse images or 

monocular video. These methods facilitated realistic virtual 

cinematography, relighting, and camera re-projection, key 

requirements for modern VFX. Recent studies further 

consolidated the transformative role of deep learning in 

creative media. For example, Berthelot et al. [22] applied 

GAN-based adversarial training for video frame synthesis, 

producing temporally coherent imagery, while Chan et al. 

[23] demonstrated deep networks for facial reenactment, 
enabling realistic lip-syncing and facial animation. More 

recently, diffusion models [24], transformers [25], and 

hybrid CNN-transformer architectures [26] have 

significantly improved temporal consistency, semantic 

accuracy, and generation fidelity, further bridging the gap 

between AI-driven automation and artist-directed creativity. 

Collectively, these milestones illustrate the growing synergy 

between computer vision and the creative industries, where 

deep learning is no longer an auxiliary tool but a central 

driver of scalability, photorealism, and accessibility in VFX 

pipelines.  

III. DEEP LEARNING APPROACHES IN VFX 

A. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) form the backbone 

of most computer vision-driven VFX applications due to 

their ability to hierarchically extract spatial features. In the 

context of VFX, CNNs have been widely applied to 

semantic segmentation, object recognition, depth estimation, 

and background subtraction, tasks that are crucial for 

automating matte extraction and scene compositing [15]. 

Architectures such as U-Net [16], originally designed for 
biomedical image segmentation, have been successfully 

adapted for VFX to perform pixel-level separation of 

foreground and background, thus replacing the labor-

intensive process of rotoscoping. Similarly, Mask R-CNN 

[17] extended region-based CNNs to instance segmentation, 

enabling object-level manipulations such as selective 

removal, replacement, or augmentation in VFX workflows. 

Recent works integrate CNNs with temporal consistency 

modules for video effects, where maintaining coherence 

across frames is essential for preventing visual artifacts [18]. 

Despite their effectiveness, CNN-based methods struggle 
with capturing global dependencies and handling large 

occlusions, which has motivated the adoption of more 

advanced architectures such as GANs, transformers, and 

diffusion models. 

B. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) have emerged as 
a powerful tool in VFX for texture synthesis, style transfer, 

inpainting, and resolution enhancement. GANs operate on a 
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generator-discriminator paradigm, where the generator 

creates realistic outputs and the discriminator enforces 

perceptual fidelity [19]. Conditional GANs (cGANs) enable 

controlled editing, where outputs can be guided by semantic 

labels, sketches, or text prompts, greatly expanding creative 
flexibility [20]. StyleGAN [21] has become a benchmark in 

high-resolution facial generation, producing photorealistic 

avatars and enabling advanced techniques such as digital de-

aging, facial reenactment, and identity-preserving synthesis 

for film and television. GAN-based super-resolution models, 

including ESRGAN [22], have been employed for legacy 

film restoration, where low-quality archival footage is 

enhanced to modern viewing standards. More recent 

developments incorporate temporal GANs for video frame 

interpolation and cycle-consistent GANs for style adaptation 

across cinematic domains, such as converting live-action 

sequences into stylized animations [23]. While GANs 
produce sharp and detailed textures, challenges such as 

mode collapse, training instability, and lack of diversity 

persist, motivating hybridization with diffusion or 

transformer-based frameworks. 

 

C. Transformers and Attention Mechanisms 

 

Transformers, originally designed for sequential data in 

natural language processing, have been adapted for vision 

tasks through the Vision Transformer (ViT) architecture 

[24]. In VFX, transformers offer the advantage of capturing 

long-range dependencies across both spatial and temporal 

domains, enabling applications in scene reconstruction, 

motion tracking, and temporal consistency for video editing 

[25]. For example, Video Transformers [26] extend this 

framework to sequential frames, providing robust handling 

of occlusions and maintaining global coherence across 
complex scenes. Transformers have also been integrated 

into hybrid CNN-transformer pipelines, leveraging CNNs 

for local detail extraction and attention mechanisms for 

global semantic reasoning [27]. These models are 

particularly impactful in video inpainting, motion 

retargeting, and neural style transfer for film editing, where 

maintaining frame-to-frame coherence is critical to avoiding 

temporal flicker. Recent innovations also involve 

multimodal transformers, which align video, text, and audio 

modalities to support creative control in VFX—such as 

generating effects guided by natural language prompts [28]. 
 

D. Diffusion Models 

 

Diffusion probabilistic models have recently emerged as a 

dominant paradigm in generative modeling, surpassing 

GANs in terms of sample diversity and photorealistic 

quality. These models iteratively transform noise into 

structured images through a denoising process, which has 

proven especially effective in video inpainting, creative 

content generation, and photorealistic synthesis [29]. 

Denoising Diffusion Probabilistic Models (DDPMs) [30] 
and their accelerated variants, such as Denoising Diffusion 

Implicit Models (DDIMs) [31], allow the generation of 

high-fidelity, temporally consistent visual content, which is 

critical in film post-production. Applications in VFX 

include object removal, scene completion, relighting, and 

cinematic style transfer, where diffusion-based methods 

outperform GANs in maintaining global semantic coherence 
[32]. Moreover, diffusion models are inherently more stable 

during training and less prone to mode collapse. Their 

integration into interactive editing workflows has further 

accelerated adoption, allowing artists to generate multiple 

variations of effects and select the most appropriate outcome 

for a given scene. Despite their computational cost due to 

iterative sampling, recent advances in distilled diffusion 

models [33] have made them increasingly practical for 

production environments requiring real-time previews. 

 

E. Neural Radiance Fields (NeRFs) 

Neural Radiance Fields (NeRFs) represent a breakthrough in 

reconstructing 3D scenes from sparse 2D inputs, making 

them invaluable in VFX for virtual cinematography, 

relighting, and scene re-rendering [34]. By learning a 

volumetric representation of a scene, NeRFs allow artists to 

generate novel views and simulate realistic camera motions 
without requiring full 3D asset modeling. This has 

transformative applications in film production, where it can 

drastically reduce the need for physical set construction or 

complex motion capture systems [35]. Extensions such as 

Dynamic NeRFs [36] enable the modeling of non-rigid and 

time-varying scenes, making it possible to capture human 

motion, facial expressions, and environmental changes 

directly from monocular video. Moreover, recent works 

have combined NeRFs with diffusion and transformer-based 

pipelines to allow text-guided 3D scene editing [37], 

bridging the gap between creative intent and technical 

execution. While NeRFs are computationally intensive and 
face challenges with real-time rendering, advances such as 

Instant-NGP [38] have significantly accelerated inference, 

making NeRFs increasingly viable for integration into 

production-grade VFX pipelines. 

 

IV. DATASETS AND BENCHMARKS 

The success of deep learning in VFX is closely tied to the 

availability of large-scale, domain-specific datasets and 

standardized benchmarks. These resources provide diverse 

visual content, enabling models to generalize across tasks 

such as object segmentation, motion tracking, facial 
reenactment, texture synthesis, and 3D scene reconstruction. 

Moreover, benchmarks ensure reproducibility and fair 

evaluation, which are critical for comparing competing 

methods in research and production environments. COCO 

(Common Objects in Context). The COCO dataset [25] 

contains over 330,000 images with pixel-level annotations 

for object detection, instance segmentation, and keypoint 

estimation. In VFX, COCO-trained models are frequently 

used to automate foreground-background separation, prop 

manipulation, and scene composition. Its diverse object 

categories also make it suitable for training models used in 

cinematic object replacement or augmentation. ImageNet. 
ImageNet [26], a large-scale dataset with over 14 million 

labeled images across 21,000 categories, serves as a 
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foundation for pretraining deep networks. Transfer learning 

from ImageNet-trained models significantly accelerates 

convergence and improves generalization for VFX tasks, 

ranging from style transfer to scene classification and 

domain adaptation in visual storytelling. DAVIS (Densely 
Annotated VIdeo Segmentation). The DAVIS benchmark 

[27] provides densely annotated video sequences for 

evaluating video object segmentation, a task central to VFX 

where maintaining temporal consistency across frames is 

vital. Methods trained on DAVIS have been used to develop 

tools for automated rotoscoping, dynamic background 

removal, and temporal-aware video inpainting, all of which 

reduce manual effort in post-production. CelebA-HQ. 

CelebA-HQ [28] is a high-resolution facial image dataset 

widely employed for generative modeling, facial 

reenactment, and digital humans. VFX applications include 

de-aging actors, identity-preserving facial synthesis, facial 
replacement, and digital stunt doubles. GAN-based and 

diffusion-based models pretrained on CelebA-HQ have 

already been integrated into commercial post-production 

pipelines. ScanNet and ShapeNet. For 3D scene 

understanding, ScanNet provides richly annotated RGB-D 

video data of indoor environments, while ShapeNet offers a 

repository of over 50,000 3D models across various 

categories [29]. These datasets underpin tasks like neural 

rendering, volumetric reconstruction, and asset generation, 

which are increasingly crucial in virtual production, digital 

set design, and hybrid CGI-live action integration. LAION-
5B and Objaverse. More recently, multimodal datasets such 

as LAION-5B and Objaverse [30] have enabled the training 

of text-to-image and text-to-3D generative models. These 

resources align natural language descriptions with visual 

and 3D assets, empowering novel workflows where VFX 

artists can generate scenes or characters through text 

prompts. Objaverse, in particular, provides millions of 3D 

assets that enhance training of NeRFs and diffusion models, 

bridging the gap between procedural asset design and data-

driven content creation. Together, these datasets and 

benchmarks provide the training corpus and evaluation 

standards necessary for advancing deep learning in VFX. 
While early datasets like ImageNet and COCO enabled 

foundational breakthroughs, the shift toward video, 3D, and 

multimodal corpora reflects the evolving demands of 

production-grade VFX pipelines. 

 

A. Evaluation Metrics 

 

Evaluation in VFX must balance fidelity, perceptual 

realism, temporal consistency, and computational efficiency. 

Unlike purely scientific imaging tasks, VFX is judged not 

only on accuracy but also on aesthetic quality and viewer 

experience. Pixel-level similarity. Traditional measures such 

as Peak Signal-to-Noise Ratio (PSNR) and the Structural 

Similarity Index (SSIM) [31] quantify reconstruction 

fidelity against ground truth. While widely reported, these 

metrics often fail to capture perceptual realism, since 

visually plausible but different reconstructions may score 
poorly. Perceptual realism. To align better with human 

vision, Learned Perceptual Image Patch Similarity (LPIPS) 

[32] compares deep feature embeddings extracted from 

pretrained networks, correlating strongly with subjective 

human judgments of image similarity. This is particularly 

relevant in texture synthesis, facial generation, and 

background replacement. Generative quality. For evaluating 
realism at a distributional level, metrics such as Fréchet 

Inception Distance (FID) and Kernel Inception Distance 

(KID) [33] are widely adopted. These metrics assess how 

closely the distribution of generated images matches that of 

real-world datasets, making them critical for GAN and 

diffusion-based methods in VFX. Video consistency. 

Temporal coherence is essential for avoiding artifacts like 

flicker in moving sequences. Metrics such as temporal 

optical flow (tOF) and temporal LPIPS (tLPIPS) [34] 

measure how smoothly generated content evolves across 

frames, ensuring consistent object appearance and 

background continuity in long video segments. Efficiency. 
Since VFX workflows often process large volumes of data, 

practical evaluation must include computational cost metrics 

such as floating-point operations per second (FLOPs), 

runtime latency, and GPU/CPU memory usage [35]. These 

determine whether models are suitable for real-time 

production (e.g., virtual sets) or offline rendering (e.g., film 

post-production). Finally, human subjective studies remain 

indispensable, as perceptual quality in VFX is inherently 

tied to viewer experience. Many studios conduct side-by-

side user evaluations or blind preference tests to validate 

realism in applied contexts.  
 

B. Applications in VFX 

 

Deep learning is transforming nearly every stage of the 

visual effects production pipeline, providing automation, 

scalability, and novel creative tools. Object removal and 
inpainting. GANs and diffusion models automate content-

aware fill, enabling seamless removal of props, wires, or 

even entire characters while maintaining background 

consistency [36]. Background replacement. CNN-based 

semantic segmentation models allow green-screen-free 

compositing, reducing the need for controlled chroma setups 

and enabling virtual production workflows [37]. Character 

animation. Deep learning–based pose estimation and motion 

transfer techniques provide markerless motion capture [38], 

lowering costs and enabling realistic digital stunt doubles 

and crowd animation. Facial synthesis. GAN-based models 
support de-aging, face-swapping, lip-sync generation, and 

digital doubles [39], increasingly used in cinema to create 

photorealistic performances without extensive manual post-

processing. Super-resolution and restoration. Deep learning–

driven super-resolution models enhance the visual quality of 

legacy films, restoring archival footage and adapting content 

for 4K and beyond [40]. Text-to-video generation. 

Multimodal models such as text-conditioned diffusion and 

transformers allow script-driven previsualization, enabling 

directors to rapidly generate scene drafts directly from 

textual descriptions [41]. Collectively, these applications 

demonstrate how AI not only automates tedious tasks but 
also introduces new creative possibilities, reshaping both 

production efficiency and artistic freedom in VFX. 
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V. CHALLENGES AND LIMITATIONS 

 

Despite rapid progress, deep learning in VFX faces several 

technical, practical, and ethical challenges. Dataset scarcity. 

Training high-capacity models demands large, domain-
specific datasets, yet annotated cinematic-quality video data 

is limited [42]. While synthetic data can supplement 

training, it may not capture the complexity of real-world 

scenes. Computational expense. State-of-the-art GANs, 

transformers, and diffusion models are resource-intensive, 

requiring powerful GPUs and long training times [43]. This 

limits adoption in smaller studios and real-time 

environments. Generalization limits. Models trained on 

specific datasets often fail to generalize to new 

environments, lighting conditions, or artistic styles [44], 

requiring domain adaptation and fine-tuning for production. 

Temporal consistency. Maintaining seamless realism across 
thousands of frames is still difficult. Even state-of-the-art 

models suffer from flicker and inconsistent object 

persistence, a major barrier for film-quality output. 

Integration with traditional pipelines. Deep learning tools 

must integrate with existing VFX software (e.g., Autodesk 

Maya, Houdini, Nuke). Lack of standardized interfaces 

slows adoption in industry. Ethical risks. The same methods 

enabling de-aging or face replacement can be misused for 

deepfakes and misinformation [45]. Establishing ethical 

guidelines and detection mechanisms is critical to safeguard 

responsible use. In sum, while deep learning offers powerful 
advances for VFX, scalability, robustness, and ethics remain 

active areas of research before widespread, frictionless 

industry adoption becomes possible. 

VI. CONCLUSION & FUTURE SCOPE 

Deep learning has emerged as a transformative force in 

VFX, fundamentally reshaping how visual narratives are 

crafted, from object removal and facial synthesis to scene 

reconstruction and text-driven generation. By automating 

labor-intensive tasks, enabling novel creative workflows, 

and bridging the gap between technical complexity and 

artistic vision, AI-driven models have introduced 

unprecedented scalability and realism into visual effects 
pipelines. Nonetheless, challenges persist, including dataset 

scarcity, computational expense, temporal consistency, and 

ethical concerns. Yet, the field’s rapid progress indicates 

that these obstacles are likely to be addressed through a 

combination of efficient architectures, multimodal 

integration, and stronger evaluation protocols. The 

convergence of artistry and artificial intelligence promises 

not only to streamline workflows but also to unlock new 

forms of storytelling, making immersive, high-quality VFX 

more accessible than ever before. The trajectory of deep 

learning in VFX suggests several promising avenues for 
innovation. One critical direction is multimodal content 

creation, where models integrate text, sketches, audio, or 

exemplar images to provide artists with more intuitive and 

controllable editing tools [46]. Early work in text-to-image 

generation has already demonstrated this capability, and its 

extension to full video pipelines could enable script-driven 

or storyboard-based previsualization. Parallel to this, 

advances in efficient transformers and distilled diffusion 

models are anticipated to reduce computational overhead, 

thereby supporting real-time applications such as live virtual 

production and interactive editing [47]. A second research 

front involves self-supervised and unsupervised learning, 
which can significantly reduce reliance on labeled datasets 

[48]. Since high-quality annotated video data for cinematic 

effects is scarce, leveraging unlabeled content for 

representation learning could accelerate the development of 

scalable models for production environments. Another 

frontier lies in Neural Radiance Fields (NeRFs) and their 

extensions to dynamic, time-varying scenes [49]. While 

NeRFs currently excel at static reconstructions, extending 

them to dynamic scenarios would allow 3D-consistent 

editing, camera re-lighting, and immersive scene 

manipulation directly from 2D inputs—ushering in new 

paradigms for virtual cinematography. Finally, as deep 
learning–based VFX tools become mainstream, the 

community must address ethical, legal, and creative 

challenges. Issues such as misuse of generative models for 

deepfakes, lack of transparency in AI-assisted artistry, and 

dataset bias must be mitigated through standardized 

benchmarks, fairness guidelines, and regulatory frameworks 

[50]. This balance between innovation and responsibility 

will be critical to ensuring that the transformative potential 

of AI in VFX benefits both industry professionals and 

society at large.   
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