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Abstract— Handwritten Text Recognition (HTR) is a long-
standing problem in computer vision and pattern recognition,
aiming to automatically transcribe handwritten documents into
machine-readable text. Traditional approaches relied on
handcrafted features and rule-based techniques, but these
methods struggled with diverse writing styles, noise, and
contextual ambiguity. With the advent of deep learning,
architectures such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTM) networks, and Transformers have significantly advanced
recognition accuracy. This paper reviews deep learning-based
HTR approaches, datasets, evaluation metrics, and applications
while highlighting challenges and future research opportunities.
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I. INTRODUCTION

Handwriting remains an essential means of communication
and archiving, especially in legal, medical, and historical
documents. The diversity of human handwriting poses
challenges due to variations in stroke thickness, writing
speed, slant, and noise from digitization [1]. Early Optical
Character Recognition (OCR) methods were designed for
printed text but failed when applied to cursive handwriting.
Deep learning has emerged as a transformative solution,
learning robust hierarchical representations directly from
data [2]. CNNs extract spatial features from images, RNNs
model sequential dependencies, and attention-based
transformers enable long-range contextual understanding
[3]. As a result, state-of-the-art HTR systems achieve near-
human performance on benchmark datasets. expand this by
updating citations Handwriting continues to be a
fundamental mode of communication and documentation,
particularly in legal, medical, and historical contexts.
Despite the prevalence of digital tools, handwritten records
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remain indispensable due to their authenticity and historical
value. However, the inherent variability in human
handwriting such as differences in stroke thickness, writing
speed, slant, and the presence of noise from digitization—
presents significant challenges for automated recognition
systems. Traditional Optical Character Recognition (OCR)
systems, primarily designed for printed text, often struggle
with cursive or unconstrained handwriting due to their
reliance on fixed character shapes and limited contextual
understanding. These systems typically employ handcrafted
features and rule-based algorithms, which are insufficient
for capturing the complexities of natural handwriting.

Text Recognition
l
v v

Offline Recognition

|
. .

Printed Text

Online Recognition

Handwritten Text

|
. [’

‘ Hand Printed Text ‘ Cursive Text ‘

| |
l l

Recognition with Recognition without
Segmentation Segmentation

Fig.1. Flow Chart of Conventional Approach [1]
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The advent of deep learning has revolutionized the field of
HTR by enabling models to learn hierarchical
representations directly from data. Convolutional Neural
Networks (CNNs) are adept at extracting spatial features
from images, making them suitable for identifying
individual characters or strokes. Recurrent Neural Networks
(RNNSs), particularly Long Short-Term Memory (LSTM)
networks, are effective in modeling sequential dependencies
inherent in handwriting, allowing for the recognition of
cursive and connected text. More recently, Transformer-
based architectures have been employed to capture long-
range contextual relationships within text, further enhancing
recognition accuracy. These advancements have led to HTR
systems that approach human-level performance on
benchmark datasets. For instance, models trained on
datasets such as IAM, RIMES, and Bentham have
demonstrated significant improvements in transcription
accuracy, facilitating the digitization and analysis of
historical manuscripts, handwritten medical records, and
other valuable documents.
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Fig.2. OpenCV based Hand Written Recognition

Il. RELATED WORKS

Handwritten Text Recognition (HTR) has a long history,
beginning with classical pattern recognition approaches that
relied heavily on handcrafted features and probabilistic
models. Hidden Markov Models (HMMs) [4] were widely
used for sequence modeling, treating handwriting as a
temporal signal. HMM-based systems segmented text lines
into character or stroke sequences and modeled transitions
probabilistically, achieving reasonable accuracy for
constrained datasets. Complementary to HMMs, feature
engineering techniques such as zoning, contour extraction,
chain codes, and histogram projection [5] were used to
encode structural information about handwritten characters.
While effective for structured datasets, these methods
struggled with large variations in handwriting style, cursive
writing, and degraded document quality, limiting their
generalization. The advent of deep learning marked a major
paradigm shift in HTR. Convolutional Neural Networks
(CNNs) [6] became instrumental in automatically learning
hierarchical spatial features, reducing the dependence on
manual feature extraction. CNNs are capable of capturing
local stroke patterns, curves, and textures in handwritten
characters, and they form the backbone of most modern
HTR pipelines. To handle sequential dependencies inherent

IJSRTM-2583-7141

in handwriting, Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks [7] were
introduced, enabling models to maintain contextual
information across variable-length input sequences.
Bidirectional LSTMs further improved performance by
processing sequences in both forward and backward
directions, allowing the network to leverage both past and
future context for recognition. A significant milestone in
modern HTR was the development of hybrid CNN-LSTM
architectures, often trained with Connectionist Temporal
Classification (CTC) loss [8]. This combination allows end-
to-end training without requiring pre-segmented character
labels, making it suitable for continuous handwriting
recognition in cursive scripts. The CNN layers extract
spatial  features, while LSTMs model sequential
dependencies, and CTC aligns predictions with the target
text sequence, accommodating variable-length input and
output sequences. In recent years, transformer-based
architectures [9], originally popularized in natural language
processing, have been adapted for HTR tasks. These models
leverage self-attention mechanisms to capture long-range
dependencies across entire text lines or paragraphs,
overcoming some limitations of recurrent models,
particularly in recognizing long sequences and complex
handwriting styles. Vision transformers (ViTs) and
sequence-to-sequence transformer models have achieved
state-of-the-art performance on multiple benchmark
datasets. Public datasets have been critical for the
development and evaluation of HTR systems. The IAM
dataset [10] provides English handwritten text at the line
and word level, supporting research in segmentation-free
recognition. RIMES [11] focuses on French handwriting,
offering diverse handwriting styles suitable for evaluating
generalization.  Bentham  [12] contains  historical
manuscripts, enabling research on challenging degraded
texts and cursive writing. Competitions such as ICFHR and
ICDAR have driven innovation, encouraging the
development of more robust and scalable HTR models.
Additionally, recent datasets such as CVL and KHATT have
expanded research into multi-writer and non-Latin scripts,
highlighting the need for models that can handle diverse
handwriting across languages and cultures. Overall, the
evolution of HTR has progressed from manual, feature-
based methods to deep learning models capable of end-to-
end learning, achieving high accuracy across varied
handwriting styles and complex scripts.
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Despite these advances, challenges remain, particularly in
low-resource scripts, historical documents, and noisy or
degraded inputs, motivating ongoing research into hybrid
architectures, self-supervised learning, and multimodal
approaches.

I11. METHODS FOR HANDWRITTEN TEXT RECOGNITION

Handwritten Text Recognition (HTR) using deep learning
leverages multiple architectures that extract spatial and
temporal features, model sequential dependencies, and
generate accurate transcriptions. Modern approaches often
combine Convolutional Neural Networks (CNNSs),
Recurrent Neural Networks (RNNs) / Long Short-Term
Memory networks (LSTMs), transformers, and data
augmentation techniques to enhance performance.

A. Convolutional Neural Networks (CNNs)

CNNs serve as the primary feature extractor in most HTR
systems.  They automatically learn hierarchical
representations, capturing low-level features such as edges,
strokes, and curves, as well as high-level features like
character shapes or word contours [1]. Typical CNN
architectures used in HTR include LeNet [2], VGGNet [3],
and ResNet variants [4], adapted to handle grayscale or
RGB handwriting images. For line-level or word-level
recognition, CNNs can process the entire input image to
generate feature maps. These feature maps are then flattened
along the width axis to produce sequences for sequential
modeling, bridging CNNs with RNNs or LSTMs in hybrid
architectures [5].

B. Recurrent Neural Networks (RNNs) and LSTMs

RNNs model sequential dependencies in handwriting, which
is essential for cursive or connected text [6]. Standard
RNNSs, however, suffer from vanishing gradient problems
when modeling long sequences. LSTMs [7] address this
limitation by incorporating gating mechanisms that retain or
forget information, allowing the network to capture long-
range dependencies. Bidirectional LSTMs (BiLSTMs)
further enhance performance by processing the sequence
both forward and backward, providing context from both
previous and subsequent strokes. This is particularly
beneficial for word-level recognition, where the shape of a
character can depend on neighboring characters.

C. CNN-LSTM-CTC Architecture

The CNN-LSTM-CTC pipeline [8] is the most widely
adopted architecture for end-to-end handwritten text
recognition, combining spatial feature extraction, sequential
modeling, and alignment-free training into a single
framework. In this approach, the CNN layers first extract
spatial features from handwriting images, generating a
feature map that encodes strokes, edges, and character
shapes. This feature map is then reshaped into a sequence,
which is fed into LSTM layers to model temporal
dependencies across the width of the text line, capturing the
sequential nature of handwriting. Finally, Connectionist
Temporal Classification (CTC) loss enables alignment-free
training, allowing the network to predict text sequences
without requiring pre-segmented character labels. By
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integrating these components, the CNN-LSTM-CTC
architecture eliminates the need for manual segmentation,
simplifies the training pipeline, and improves recognition
accuracy, particularly for cursive and variable-length
handwritten sequences.

D. Transformer-Based Models

Transformers [9] have been increasingly adapted for
handwritten text recognition due to their ability to capture
long-range dependencies across handwriting sequences.
Unlike RNNs, which process inputs sequentially,
transformers process the entire sequence in parallel and
leverage self-attention mechanisms to learn relationships
between distant regions of the input, making them
particularly effective for long text lines or complex cursive
scripts. Variants include Vision Transformers (ViTs), which
apply transformer blocks directly to image patches to extract
global context features [10]; Sequence-to-Sequence
Transformers, which model the mapping from feature
sequences to text sequences and are suitable for line-level
recognition; and Hybrid CNN-Transformer Architectures,
which combine CNNs for local feature extraction with
transformer blocks to capture global contextual information
[11]. These transformer-based  approaches  have
demonstrated superior performance on long sequences,
multi-writer ~ datasets, and historical manuscripts,
outperforming traditional RNN-LSTM models in both
accuracy and robustness to handwriting variability.

E. Generative Models for Data Augmentation

Data scarcity remains a significant challenge in handwritten
text recognition, especially for historical manuscripts, rare
scripts, or low-resource languages. Generative models such
as Generative Adversarial Networks (GANs) [12] and
diffusion models [13] have been employed to synthesize
realistic handwriting samples, thereby augmenting training
datasets and enhancing model robustness. GAN-based
augmentation generates new handwriting styles by learning
the distribution of real handwritten samples, producing
variations in stroke, slant, and character shapes that mimic
human writing. Diffusion-based augmentation, on the other
hand, iteratively refines noise into realistic handwriting,
enabling the creation of diverse and high-fidelity samples
for training. By incorporating these generative approaches,
deep learning architectures can better generalize to unseen
handwriting styles and improve recognition accuracy,
particularly on challenging or underrepresented datasets.

F. Preprocessing and Normalization

Effective preprocessing is a critical step for achieving high
accuracy in handwritten text recognition. Common
techniques include grayscale normalization, which mitigates
illumination variations and ensures consistent input
intensity; size and aspect ratio normalization, which
standardizes input dimensions to fit neural network
architectures; and noise removal using morphological
operations, median filtering, or Gaussian smoothing to
reduce artifacts from scanning or digitization. Additionally,
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line and word segmentation is often applied to datasets
lacking pre-segmented sequences, enabling the model to
process manageable text units. By applying these
preprocessing and normalization steps, deep learning
models can focus on meaningful features, reduce training
complexity, and improve generalization across diverse
handwriting styles and document conditions.

IVV. DATASETS AND BENCHMARKS

A variety of publicly available datasets have facilitated the
development and benchmarking of handwritten text
recognition (HTR) systems. The 1AM dataset [10] provides
a large collection of English handwriting samples at the line,
word, and character levels, supporting segmentation-free
recognition research. The RIMES dataset [11] focuses on
French handwriting, offering diverse writing styles suitable
for evaluating generalization across writers. The Bentham
dataset [12] contains historical manuscripts, introducing
challenges such as degraded text, cursive writing, and noise.
The CVL dataset [16] is a multi-writer corpus supporting
both character and word recognition, while the KHATT
dataset [17] provides Arabic handwriting samples, enabling
research in non-Latin scripts. These datasets collectively
provide standardized benchmarks for training, evaluating,
and comparing HTR algorithms under varying conditions,
styles, and languages.

A. Evaluation Metrics

The performance of HTR systems is commonly evaluated
using metrics that quantify transcription accuracy. Character
Error Rate (CER) [18] measures the proportion of
incorrectly recognized characters relative to the total
characters in the ground truth, while Word Error Rate
(WER) [19] provides a sequence-level evaluation reflecting
substitution, insertion, and deletion errors at the word level.
Edit Distance, also known as Levenshtein Distance [20],
quantifies the minimum number of edits required to
transform predicted text into ground truth, offering fine-
grained insight into errors. In some setups, BLEU and
ROUGE scores [21] are applied to assess sequence-level
quality, particularly when evaluating recognition in context
or for downstream applications such as document translation
or semantic analysis.

B. Applications

Deep learning-based HTR has enabled a wide range of
practical applications across industries. Historical archives
and manuscripts can be digitized and transcribed
automatically [22], preserving cultural heritage while
facilitating search and analysis. Automated bank cheque
processing benefits from HTR for extracting handwritten
amounts and signatures [23]. In healthcare, handwritten
medical records and prescriptions can be digitized to
improve record keeping and patient care [24]. HTR also
supports educational applications, such as smart classrooms
and automated exam evaluation [25], and contributes to
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multilingual OCR systems capable of recognizing diverse
scripts  [26]. These applications demonstrate the
transformative impact of HTR in both commercial and
societal contexts.

V. CHALLENGES AND LIMITATIONS

Despite significant progress, HTR faces several challenges.
Variability in handwriting styles across writers, including
differences in slant, stroke thickness, and cursive
connections, complicates model generalization [27]. Limited
availability of labeled data for low-resource scripts restricts
training effectiveness [28], while recognition of historical or
degraded documents presents difficulties due to noise, ink
bleed, and page deterioration [30]. Additionally, HTR for
low-resource scripts, such as Indic or Middle Eastern
languages, remains underexplored [29]. Ethical concerns
related to privacy and data ownership also arise when
handling sensitive handwritten content [31].

V1. CONCLUSION & FUTURE SCOPE

Deep learning has revolutionized handwritten text
recognition, achieving significant improvements in
accuracy, adaptability, and scalability. CNNs, LSTMs, and
transformers form the backbone of modern HTR systems,
often supported by data augmentation through generative
models and large-scale benchmark datasets. While
challenges such as handwriting variability, historical
document degradation, and low-resource scripts persist,
ongoing advancements in  self-supervised learning,
multimodal approaches, and ethical frameworks are paving
the way for more robust, efficient, and transparent HTR
solutions. These innovations promise a future in which
handwritten text can be seamlessly digitized, analyzed, and
integrated into modern digital workflows. Future research in
HTR is likely to focus on several promising directions.
Multilingual and cross-lingual HTR systems aim to
generalize across scripts and writing styles, while self-
supervised learning can reduce dependency on large labeled
datasets by leveraging unlabeled handwriting data.
Integration of multimodal cues, including pen trajectory,
stroke order, or pressure, may enhance recognition accuracy.
Advances in model compression and efficient architectures
will enable real-time HTR on edge devices, broadening
accessibility. Furthermore, explainable Al techniques can
provide transparency in decision-making, particularly in
sensitive applications such as legal or medical document
analysis.
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