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Abstract— Handwritten Text Recognition (HTR) is a long-

standing problem in computer vision and pattern recognition, 

aiming to automatically transcribe handwritten documents into 

machine-readable text. Traditional approaches relied on 

handcrafted features and rule-based techniques, but these 

methods struggled with diverse writing styles, noise, and 

contextual ambiguity. With the advent of deep learning, 

architectures such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), Long Short-Term Memory 

(LSTM) networks, and Transformers have significantly advanced 

recognition accuracy. This paper reviews deep learning-based 

HTR approaches, datasets, evaluation metrics, and applications 

while highlighting challenges and future research opportunities.   

 

Keywords— Handwritten Text Recognition (HTR), Deep 
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I. INTRODUCTION 

Handwriting remains an essential means of communication 

and archiving, especially in legal, medical, and historical 

documents. The diversity of human handwriting poses 

challenges due to variations in stroke thickness, writing 

speed, slant, and noise from digitization [1]. Early Optical 
Character Recognition (OCR) methods were designed for 

printed text but failed when applied to cursive handwriting. 

Deep learning has emerged as a transformative solution, 

learning robust hierarchical representations directly from 

data [2]. CNNs extract spatial features from images, RNNs 

model sequential dependencies, and attention-based 

transformers enable long-range contextual understanding 

[3]. As a result, state-of-the-art HTR systems achieve near-

human performance on benchmark datasets. expand this by 

updating citations Handwriting continues to be a 

fundamental mode of communication and documentation, 
particularly in legal, medical, and historical contexts. 

Despite the prevalence of digital tools, handwritten records 

remain indispensable due to their authenticity and historical 

value. However, the inherent variability in human 

handwriting such as differences in stroke thickness, writing 

speed, slant, and the presence of noise from digitization—

presents significant challenges for automated recognition 

systems. Traditional Optical Character Recognition (OCR) 

systems, primarily designed for printed text, often struggle 

with cursive or unconstrained handwriting due to their 

reliance on fixed character shapes and limited contextual 
understanding. These systems typically employ handcrafted 

features and rule-based algorithms, which are insufficient 

for capturing the complexities of natural handwriting.  

 

 
 

Fig.1. Flow Chart of Conventional Approach [1] 
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The advent of deep learning has revolutionized the field of 

HTR by enabling models to learn hierarchical 

representations directly from data. Convolutional Neural 

Networks (CNNs) are adept at extracting spatial features 

from images, making them suitable for identifying 
individual characters or strokes. Recurrent Neural Networks 

(RNNs), particularly Long Short-Term Memory (LSTM) 

networks, are effective in modeling sequential dependencies 

inherent in handwriting, allowing for the recognition of 

cursive and connected text. More recently, Transformer-

based architectures have been employed to capture long-

range contextual relationships within text, further enhancing 

recognition accuracy. These advancements have led to HTR 

systems that approach human-level performance on 

benchmark datasets. For instance, models trained on 

datasets such as IAM, RIMES, and Bentham have 

demonstrated significant improvements in transcription 
accuracy, facilitating the digitization and analysis of 

historical manuscripts, handwritten medical records, and 

other valuable documents. 

 

 
 

Fig.2. OpenCV based Hand Written Recognition 

 

II. RELATED WORKS 

Handwritten Text Recognition (HTR) has a long history, 

beginning with classical pattern recognition approaches that 

relied heavily on handcrafted features and probabilistic 

models. Hidden Markov Models (HMMs) [4] were widely 

used for sequence modeling, treating handwriting as a 
temporal signal. HMM-based systems segmented text lines 

into character or stroke sequences and modeled transitions 

probabilistically, achieving reasonable accuracy for 

constrained datasets. Complementary to HMMs, feature 

engineering techniques such as zoning, contour extraction, 

chain codes, and histogram projection [5] were used to 

encode structural information about handwritten characters. 

While effective for structured datasets, these methods 

struggled with large variations in handwriting style, cursive 

writing, and degraded document quality, limiting their 

generalization. The advent of deep learning marked a major 
paradigm shift in HTR. Convolutional Neural Networks 

(CNNs) [6] became instrumental in automatically learning 

hierarchical spatial features, reducing the dependence on 

manual feature extraction. CNNs are capable of capturing 

local stroke patterns, curves, and textures in handwritten 

characters, and they form the backbone of most modern 

HTR pipelines. To handle sequential dependencies inherent 

in handwriting, Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) networks [7] were 

introduced, enabling models to maintain contextual 

information across variable-length input sequences. 

Bidirectional LSTMs further improved performance by 
processing sequences in both forward and backward 

directions, allowing the network to leverage both past and 

future context for recognition. A significant milestone in 

modern HTR was the development of hybrid CNN-LSTM 

architectures, often trained with Connectionist Temporal 

Classification (CTC) loss [8]. This combination allows end-

to-end training without requiring pre-segmented character 

labels, making it suitable for continuous handwriting 

recognition in cursive scripts. The CNN layers extract 

spatial features, while LSTMs model sequential 

dependencies, and CTC aligns predictions with the target 

text sequence, accommodating variable-length input and 
output sequences. In recent years, transformer-based 

architectures [9], originally popularized in natural language 

processing, have been adapted for HTR tasks. These models 

leverage self-attention mechanisms to capture long-range 

dependencies across entire text lines or paragraphs, 

overcoming some limitations of recurrent models, 

particularly in recognizing long sequences and complex 

handwriting styles. Vision transformers (ViTs) and 

sequence-to-sequence transformer models have achieved 

state-of-the-art performance on multiple benchmark 

datasets. Public datasets have been critical for the 
development and evaluation of HTR systems. The IAM 

dataset [10] provides English handwritten text at the line 

and word level, supporting research in segmentation-free 

recognition. RIMES [11] focuses on French handwriting, 

offering diverse handwriting styles suitable for evaluating 

generalization. Bentham [12] contains historical 

manuscripts, enabling research on challenging degraded 

texts and cursive writing. Competitions such as ICFHR and 

ICDAR have driven innovation, encouraging the 

development of more robust and scalable HTR models. 

Additionally, recent datasets such as CVL and KHATT have 

expanded research into multi-writer and non-Latin scripts, 
highlighting the need for models that can handle diverse 

handwriting across languages and cultures. Overall, the 

evolution of HTR has progressed from manual, feature-

based methods to deep learning models capable of end-to-

end learning, achieving high accuracy across varied 

handwriting styles and complex scripts.  

 

 
 

Fig.3. Optimizers and Layers 
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Despite these advances, challenges remain, particularly in 

low-resource scripts, historical documents, and noisy or 

degraded inputs, motivating ongoing research into hybrid 

architectures, self-supervised learning, and multimodal 

approaches. 

III. METHODS FOR HANDWRITTEN TEXT RECOGNITION 

Handwritten Text Recognition (HTR) using deep learning 

leverages multiple architectures that extract spatial and 

temporal features, model sequential dependencies, and 
generate accurate transcriptions. Modern approaches often 

combine Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs) / Long Short-Term 

Memory networks (LSTMs), transformers, and data 
augmentation techniques to enhance performance. 

A. Convolutional Neural Networks (CNNs) 

CNNs serve as the primary feature extractor in most HTR 

systems. They automatically learn hierarchical 

representations, capturing low-level features such as edges, 

strokes, and curves, as well as high-level features like 

character shapes or word contours [1]. Typical CNN 
architectures used in HTR include LeNet [2], VGGNet [3], 

and ResNet variants [4], adapted to handle grayscale or 

RGB handwriting images. For line-level or word-level 

recognition, CNNs can process the entire input image to 

generate feature maps. These feature maps are then flattened 

along the width axis to produce sequences for sequential 

modeling, bridging CNNs with RNNs or LSTMs in hybrid 
architectures [5].  

B. Recurrent Neural Networks (RNNs) and LSTMs 

RNNs model sequential dependencies in handwriting, which 

is essential for cursive or connected text [6]. Standard 

RNNs, however, suffer from vanishing gradient problems 

when modeling long sequences. LSTMs [7] address this 

limitation by incorporating gating mechanisms that retain or 

forget information, allowing the network to capture long-

range dependencies. Bidirectional LSTMs (BiLSTMs) 

further enhance performance by processing the sequence 

both forward and backward, providing context from both 
previous and subsequent strokes. This is particularly 

beneficial for word-level recognition, where the shape of a 

character can depend on neighboring characters.  

C. CNN-LSTM-CTC Architecture 

The CNN-LSTM-CTC pipeline [8] is the most widely 
adopted architecture for end-to-end handwritten text 

recognition, combining spatial feature extraction, sequential 

modeling, and alignment-free training into a single 

framework. In this approach, the CNN layers first extract 

spatial features from handwriting images, generating a 

feature map that encodes strokes, edges, and character 

shapes. This feature map is then reshaped into a sequence, 

which is fed into LSTM layers to model temporal 

dependencies across the width of the text line, capturing the 

sequential nature of handwriting. Finally, Connectionist 

Temporal Classification (CTC) loss enables alignment-free 

training, allowing the network to predict text sequences 
without requiring pre-segmented character labels. By 

integrating these components, the CNN-LSTM-CTC 

architecture eliminates the need for manual segmentation, 

simplifies the training pipeline, and improves recognition 

accuracy, particularly for cursive and variable-length 

handwritten sequences.  

D. Transformer-Based Models 

Transformers [9] have been increasingly adapted for 

handwritten text recognition due to their ability to capture 

long-range dependencies across handwriting sequences. 

Unlike RNNs, which process inputs sequentially, 

transformers process the entire sequence in parallel and 
leverage self-attention mechanisms to learn relationships 

between distant regions of the input, making them 

particularly effective for long text lines or complex cursive 

scripts. Variants include Vision Transformers (ViTs), which 

apply transformer blocks directly to image patches to extract 

global context features [10]; Sequence-to-Sequence 

Transformers, which model the mapping from feature 

sequences to text sequences and are suitable for line-level 

recognition; and Hybrid CNN-Transformer Architectures, 

which combine CNNs for local feature extraction with 

transformer blocks to capture global contextual information 
[11]. These transformer-based approaches have 

demonstrated superior performance on long sequences, 

multi-writer datasets, and historical manuscripts, 

outperforming traditional RNN-LSTM models in both 

accuracy and robustness to handwriting variability. 

E. Generative Models for Data Augmentation 

Data scarcity remains a significant challenge in handwritten 

text recognition, especially for historical manuscripts, rare 

scripts, or low-resource languages. Generative models such 

as Generative Adversarial Networks (GANs) [12] and 

diffusion models [13] have been employed to synthesize 

realistic handwriting samples, thereby augmenting training 

datasets and enhancing model robustness. GAN-based 

augmentation generates new handwriting styles by learning 

the distribution of real handwritten samples, producing 

variations in stroke, slant, and character shapes that mimic 

human writing. Diffusion-based augmentation, on the other 

hand, iteratively refines noise into realistic handwriting, 
enabling the creation of diverse and high-fidelity samples 

for training. By incorporating these generative approaches, 

deep learning architectures can better generalize to unseen 

handwriting styles and improve recognition accuracy, 

particularly on challenging or underrepresented datasets. 

 

F. Preprocessing and Normalization 

 

Effective preprocessing is a critical step for achieving high 

accuracy in handwritten text recognition. Common 

techniques include grayscale normalization, which mitigates 

illumination variations and ensures consistent input 

intensity; size and aspect ratio normalization, which 

standardizes input dimensions to fit neural network 

architectures; and noise removal using morphological 

operations, median filtering, or Gaussian smoothing to 

reduce artifacts from scanning or digitization. Additionally, 



22 
IJSRTM-2583-7141 

 

 

 

line and word segmentation is often applied to datasets 

lacking pre-segmented sequences, enabling the model to 

process manageable text units. By applying these 

preprocessing and normalization steps, deep learning 

models can focus on meaningful features, reduce training 
complexity, and improve generalization across diverse 

handwriting styles and document conditions. 
 

IV. DATASETS AND BENCHMARKS 

A variety of publicly available datasets have facilitated the 
development and benchmarking of handwritten text 

recognition (HTR) systems. The IAM dataset [10] provides 

a large collection of English handwriting samples at the line, 

word, and character levels, supporting segmentation-free 

recognition research. The RIMES dataset [11] focuses on 

French handwriting, offering diverse writing styles suitable 

for evaluating generalization across writers. The Bentham 

dataset [12] contains historical manuscripts, introducing 

challenges such as degraded text, cursive writing, and noise. 

The CVL dataset [16] is a multi-writer corpus supporting 

both character and word recognition, while the KHATT 
dataset [17] provides Arabic handwriting samples, enabling 

research in non-Latin scripts. These datasets collectively 

provide standardized benchmarks for training, evaluating, 

and comparing HTR algorithms under varying conditions, 

styles, and languages. 

 

A. Evaluation Metrics 

 

The performance of HTR systems is commonly evaluated 

using metrics that quantify transcription accuracy. Character 

Error Rate (CER) [18] measures the proportion of 

incorrectly recognized characters relative to the total 

characters in the ground truth, while Word Error Rate 

(WER) [19] provides a sequence-level evaluation reflecting 

substitution, insertion, and deletion errors at the word level. 

Edit Distance, also known as Levenshtein Distance [20], 

quantifies the minimum number of edits required to 

transform predicted text into ground truth, offering fine-
grained insight into errors. In some setups, BLEU and 

ROUGE scores [21] are applied to assess sequence-level 

quality, particularly when evaluating recognition in context 

or for downstream applications such as document translation 

or semantic analysis.  

 

B. Applications 

 

Deep learning-based HTR has enabled a wide range of 

practical applications across industries. Historical archives 

and manuscripts can be digitized and transcribed 

automatically [22], preserving cultural heritage while 

facilitating search and analysis. Automated bank cheque 

processing benefits from HTR for extracting handwritten 

amounts and signatures [23]. In healthcare, handwritten 

medical records and prescriptions can be digitized to 

improve record keeping and patient care [24]. HTR also 
supports educational applications, such as smart classrooms 

and automated exam evaluation [25], and contributes to 

multilingual OCR systems capable of recognizing diverse 

scripts [26]. These applications demonstrate the 

transformative impact of HTR in both commercial and 

societal contexts. 

 
V. CHALLENGES AND LIMITATIONS 

 

Despite significant progress, HTR faces several challenges. 

Variability in handwriting styles across writers, including 

differences in slant, stroke thickness, and cursive 

connections, complicates model generalization [27]. Limited 

availability of labeled data for low-resource scripts restricts 

training effectiveness [28], while recognition of historical or 

degraded documents presents difficulties due to noise, ink 

bleed, and page deterioration [30]. Additionally, HTR for 

low-resource scripts, such as Indic or Middle Eastern 

languages, remains underexplored [29]. Ethical concerns 
related to privacy and data ownership also arise when 

handling sensitive handwritten content [31]. 

VI. CONCLUSION & FUTURE SCOPE 

Deep learning has revolutionized handwritten text 

recognition, achieving significant improvements in 

accuracy, adaptability, and scalability. CNNs, LSTMs, and 

transformers form the backbone of modern HTR systems, 

often supported by data augmentation through generative 

models and large-scale benchmark datasets. While 

challenges such as handwriting variability, historical 

document degradation, and low-resource scripts persist, 
ongoing advancements in self-supervised learning, 

multimodal approaches, and ethical frameworks are paving 

the way for more robust, efficient, and transparent HTR 

solutions. These innovations promise a future in which 

handwritten text can be seamlessly digitized, analyzed, and 

integrated into modern digital workflows. Future research in 

HTR is likely to focus on several promising directions. 

Multilingual and cross-lingual HTR systems aim to 

generalize across scripts and writing styles, while self-

supervised learning can reduce dependency on large labeled 

datasets by leveraging unlabeled handwriting data. 

Integration of multimodal cues, including pen trajectory, 
stroke order, or pressure, may enhance recognition accuracy. 

Advances in model compression and efficient architectures 

will enable real-time HTR on edge devices, broadening 

accessibility. Furthermore, explainable AI techniques can 

provide transparency in decision-making, particularly in 

sensitive applications such as legal or medical document 

analysis.   
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